miniconf/
node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
use core::{
    fmt::Write,
    ops::{Deref, DerefMut},
};

use serde::{Deserialize, Serialize};

use crate::{Error, IntoKeys, KeysIter, Traversal, TreeKey};

/// Type of a node: leaf or internal
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum NodeType {
    /// A leaf node
    ///
    /// There are no nodes below this node
    Leaf,

    /// An internal node
    ///
    /// A non-leaf node with one or more leaf nodes below this node
    Internal,
}

impl NodeType {
    /// Whether this node is a leaf
    #[inline]
    pub const fn is_leaf(&self) -> bool {
        matches!(self, Self::Leaf)
    }
}

/// Type and depth of a node in a `TreeKey`
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Node {
    /// The node depth
    ///
    /// This is the length of the key required to identify it.
    pub depth: usize,

    /// Leaf or internal
    pub typ: NodeType,
}

impl Node {
    /// The depth
    #[inline]
    pub const fn depth(&self) -> usize {
        self.depth
    }

    /// The node type
    #[inline]
    pub const fn typ(&self) -> NodeType {
        self.typ
    }

    /// The node is a leaf node
    #[inline]
    pub const fn is_leaf(&self) -> bool {
        self.typ.is_leaf()
    }

    /// Create a leaf node
    #[inline]
    pub const fn leaf(depth: usize) -> Self {
        Self {
            depth,
            typ: NodeType::Leaf,
        }
    }

    /// Create an inernal node
    #[inline]
    pub const fn internal(depth: usize) -> Self {
        Self {
            depth,
            typ: NodeType::Internal,
        }
    }
}

impl From<Node> for usize {
    #[inline]
    fn from(value: Node) -> Self {
        value.depth
    }
}

/// Map a `TreeKey::traverse_by_key()` `Result` to a `Transcode::transcode()` `Result`.
impl TryFrom<Result<usize, Error<()>>> for Node {
    type Error = Traversal;

    #[inline]
    fn try_from(value: Result<usize, Error<()>>) -> Result<Self, Traversal> {
        match value {
            Ok(depth) => Ok(Node::leaf(depth)),
            Err(Error::Traversal(Traversal::TooShort(depth))) => Ok(Node::internal(depth)),
            Err(Error::Inner(depth, ())) => Err(Traversal::TooShort(depth)),
            Err(Error::Traversal(err)) => Err(err),
            Err(Error::Finalization(())) => unreachable!(),
        }
    }
}

/// Look up an `IntoKeys` in a `TreeKey` and transcode it.
pub trait Transcode {
    /// Perform a node lookup of a `K: IntoKeys` on a `M: TreeKey<Y>` and transcode it.
    ///
    /// This modifies `self` such that afterwards `Self: IntoKeys` can be used on `M` again.
    /// It returns a `Node` with node type and depth information.
    ///
    /// Returning `Err(Traversal::TooShort(depth))` indicates that there was insufficient
    /// capacity and a key could not be encoded at the given depth.
    fn transcode<M, K>(&mut self, keys: K) -> Result<Node, Traversal>
    where
        M: TreeKey + ?Sized,
        K: IntoKeys;
}

impl<T: Transcode + ?Sized> Transcode for &mut T {
    fn transcode<M, K>(&mut self, keys: K) -> Result<Node, Traversal>
    where
        M: TreeKey + ?Sized,
        K: IntoKeys,
    {
        T::transcode::<M, _>(self, keys)
    }
}

/// Shim to provide the bare `Node` lookup without transcoding target
impl Transcode for () {
    fn transcode<M, K>(&mut self, keys: K) -> Result<Node, Traversal>
    where
        M: TreeKey + ?Sized,
        K: IntoKeys,
    {
        M::traverse_by_key(keys.into_keys(), |_, _, _| Ok(())).try_into()
    }
}

/// Path with named keys separated by a separator char
///
/// The path will either be empty or start with the separator.
///
/// * `path: T`: A `Write` to write the separators and node names into during `Transcode`.
///   See also [TreeKey::traverse_all()] and `Metadata::max_length()` for upper bounds
///   on path length. Can also be a `AsRef<str>` to implement `IntoKeys` (see [`KeysIter`]).
/// * `const S: char`: The path hierarchy separator to be inserted before each name,
///   e.g. `'/'`.
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[repr(transparent)]
#[serde(transparent)]
pub struct Path<T: ?Sized, const S: char>(pub T);

impl<T: ?Sized, const S: char> Path<T, S> {
    /// The path hierarchy separator
    #[inline]
    pub const fn separator(&self) -> char {
        S
    }
}

impl<T, const S: char> Path<T, S> {
    /// Extract just the path
    #[inline]
    pub fn into_inner(self) -> T {
        self.0
    }
}

impl<T: ?Sized, const S: char> Deref for Path<T, S> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T: ?Sized, const S: char> DerefMut for Path<T, S> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<T, const S: char> From<T> for Path<T, S> {
    #[inline]
    fn from(value: T) -> Self {
        Path(value)
    }
}

/// String split/skip wrapper, smaller/simpler than `.split(S).skip(1)`
#[derive(Copy, Clone, Default, Debug, PartialEq, PartialOrd, Serialize, Deserialize)]
#[repr(transparent)]
pub struct PathIter<'a, const S: char>(Option<&'a str>);

impl<'a, const S: char> PathIter<'a, S> {
    /// Create a new `PathIter`
    #[inline]
    pub fn new(s: Option<&'a str>) -> Self {
        Self(s)
    }

    /// Create a new `PathIter` starting at the root.
    ///
    /// This calls `next()` once to pop everything up to and including the first separator.
    #[inline]
    pub fn root(s: &'a str) -> Self {
        let mut s = Self::new(Some(s));
        // Skip the first part to disambiguate between
        // the one-Key Keys `[""]` and the zero-Key Keys `[]`.
        // This is relevant in the case of e.g. `Option` and newtypes.
        // See the corresponding unittests (`just_option`).
        // It implies that Paths start with the separator
        // or are empty. Everything before the first separator is ignored.
        s.next();
        s
    }
}

impl<'a, const S: char> Iterator for PathIter<'a, S> {
    type Item = &'a str;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.map(|s| {
            let pos = s
                .chars()
                .map_while(|c| (c != S).then_some(c.len_utf8()))
                .sum();
            let (left, right) = s.split_at(pos);
            self.0 = right.get(S.len_utf8()..);
            left
        })
    }
}

impl<'a, const S: char> core::iter::FusedIterator for PathIter<'a, S> {}

impl<'a, T: AsRef<str> + ?Sized, const S: char> IntoKeys for Path<&'a T, S> {
    type IntoKeys = KeysIter<PathIter<'a, S>>;

    #[inline]
    fn into_keys(self) -> Self::IntoKeys {
        PathIter::<'a, S>::root(self.0.as_ref()).into_keys()
    }
}

impl<'a, T: AsRef<str> + ?Sized, const S: char> IntoKeys for &'a Path<T, S> {
    type IntoKeys = KeysIter<PathIter<'a, S>>;

    #[inline]
    fn into_keys(self) -> Self::IntoKeys {
        Path(&self.0).into_keys()
    }
}

impl<T: Write + ?Sized, const S: char> Transcode for Path<T, S> {
    fn transcode<M, K>(&mut self, keys: K) -> Result<Node, Traversal>
    where
        M: TreeKey + ?Sized,
        K: IntoKeys,
    {
        M::traverse_by_key(keys.into_keys(), |index, name, _len| {
            self.0.write_char(S).or(Err(()))?;
            let mut buf = itoa::Buffer::new();
            let name = name.unwrap_or_else(|| buf.format(index));
            debug_assert!(!name.contains(S));
            self.0.write_str(name).or(Err(()))
        })
        .try_into()
    }
}

/// Indices of `usize` to identify a node in a `TreeKey`
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[repr(transparent)]
#[serde(transparent)]
pub struct Indices<T: ?Sized>(pub T);

impl<T: ?Sized> Deref for Indices<T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T: ?Sized> DerefMut for Indices<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<T> Indices<T> {
    /// Extract just the indices
    #[inline]
    pub fn into_inner(self) -> T {
        self.0
    }
}

impl<T> From<T> for Indices<T> {
    #[inline]
    fn from(value: T) -> Self {
        Self(value)
    }
}

impl<const D: usize, T: Copy + Default> Default for Indices<[T; D]> {
    #[inline]
    fn default() -> Self {
        Self([Default::default(); D])
    }
}

impl<const D: usize, T> From<Indices<[T; D]>> for [T; D] {
    #[inline]
    fn from(value: Indices<[T; D]>) -> Self {
        value.0
    }
}

impl<T: IntoKeys> IntoKeys for Indices<T> {
    type IntoKeys = T::IntoKeys;
    #[inline]
    fn into_keys(self) -> Self::IntoKeys {
        self.0.into_keys()
    }
}

impl<T: AsMut<[usize]> + ?Sized> Transcode for Indices<T> {
    #[inline]
    fn transcode<M, K>(&mut self, keys: K) -> Result<Node, Traversal>
    where
        M: TreeKey + ?Sized,
        K: IntoKeys,
    {
        self.0.as_mut().transcode::<M, _>(keys)
    }
}

macro_rules! impl_transcode_slice {
    ($($t:ty)+) => {$(
        impl Transcode for [$t] {
            fn transcode<M, K>(&mut self, keys: K) -> Result<Node, Traversal>
            where
                M: TreeKey + ?Sized,
                K: IntoKeys,
            {
                let mut it = self.iter_mut();
                M::traverse_by_key(keys.into_keys(), |index, _name, _len| {
                    let idx = it.next().ok_or(())?;
                    *idx = index.try_into().or(Err(()))?;
                    Ok(())
                })
                .try_into()
            }
        }
    )+};
}
impl_transcode_slice!(usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128);

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn strsplit() {
        use heapless::Vec;
        for p in ["/d/1", "/a/bccc//d/e/", "", "/", "a/b", "a"] {
            let a: Vec<_, 10> = PathIter::<'_, '/'>::root(p).collect();
            let b: Vec<_, 10> = p.split('/').skip(1).collect();
            assert_eq!(a, b);
        }
    }
}