1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
//! # Lockin
//!
//! The `lockin` application implements a lock-in amplifier using either an external or internally
//! generated reference.
//!
//! ## Features
//! * Up to 800 kHz sampling
//! * Up to 400 kHz modulation frequency
//! * Supports internal and external reference sources:
//! 1. Internal: Generate reference internally and output on one of the channel outputs
//! 2. External: Reciprocal PLL, reference input applied to DI0.
//! * Adjustable PLL and locking time constants
//! * Adjustable phase offset and harmonic index
//! * Run-time configurable output modes (in-phase, quadrature, magnitude, log2 power, phase, frequency)
//! * Input/output data streamng via UDP
//!
//! ## Settings
//! Refer to the [Lockin] structure for documentation of run-time configurable settings
//! for this application.
//!
//! ## Telemetry
//! Refer to [stabilizer::net::telemetry::Telemetry] for information about telemetry reported by this application.
//!
//! ## Stream
//! This application streams raw ADC and DAC data over UDP. Refer to
//! [stabilizer::net::data_stream] for more information.
#![no_std]
#![no_main]
use core::{
convert::TryFrom,
mem::MaybeUninit,
sync::atomic::{fence, Ordering},
};
use miniconf::{Leaf, Tree};
use rtic_monotonics::Monotonic;
use fugit::ExtU32;
use mutex_trait::prelude::*;
use idsp::{Accu, Complex, ComplexExt, Filter, Lowpass, Repeat, RPLL};
use stabilizer::{
hardware::{
self,
adc::{Adc0Input, Adc1Input, AdcCode},
afe::Gain,
dac::{Dac0Output, Dac1Output, DacCode},
hal,
input_stamper::InputStamper,
signal_generator,
timers::SamplingTimer,
DigitalInput0, DigitalInput1, SerialTerminal, SystemTimer, Systick,
UsbDevice, AFE0, AFE1,
},
net::{
data_stream::{FrameGenerator, StreamFormat, StreamTarget},
serde::{Deserialize, Serialize},
telemetry::TelemetryBuffer,
NetworkState, NetworkUsers,
},
settings::NetSettings,
};
// The logarithm of the number of samples in each batch process. This corresponds with 2^3 samples
// per batch = 8 samples
const BATCH_SIZE_LOG2: u32 = 3;
const BATCH_SIZE: usize = 1 << BATCH_SIZE_LOG2;
// The logarithm of the number of 100MHz timer ticks between each sample. This corresponds with a
// sampling period of 2^7 = 128 ticks. At 100MHz, 10ns per tick, this corresponds to a sampling
// period of 1.28 uS or 781.25 KHz.
const SAMPLE_TICKS_LOG2: u32 = 7;
const SAMPLE_TICKS: u32 = 1 << SAMPLE_TICKS_LOG2;
#[derive(Clone, Debug, Tree)]
pub struct Settings {
pub lockin: Lockin,
pub net: NetSettings,
}
impl stabilizer::settings::AppSettings for Settings {
fn new(net: NetSettings) -> Self {
Self {
net,
lockin: Lockin::default(),
}
}
fn net(&self) -> &NetSettings {
&self.net
}
}
impl serial_settings::Settings for Settings {
fn reset(&mut self) {
*self = Self {
lockin: Lockin::default(),
net: NetSettings::new(self.net.mac),
}
}
}
#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
enum Conf {
/// Output the lockin magnitude.
Magnitude,
/// Output the phase of the lockin
Phase,
/// Output the lockin reference frequency as a sinusoid
ReferenceFrequency,
/// Output the logarithmic power of the lockin
LogPower,
/// Output the in-phase component of the lockin signal.
InPhase,
/// Output the quadrature component of the lockin signal.
Quadrature,
/// Output the lockin internal modulation frequency as a sinusoid
Modulation,
}
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
enum LockinMode {
/// Utilize an internally generated reference for demodulation
Internal,
/// Utilize an external modulation signal supplied to DI0
External,
}
#[derive(Clone, Debug, Tree)]
pub struct Lockin {
/// Configure the Analog Front End (AFE) gain.
///
/// # Path
/// `afe/<n>`
///
/// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
///
/// # Value
/// Any of the variants of [Gain] enclosed in double quotes.
afe: [Leaf<Gain>; 2],
/// Specifies the operational mode of the lockin.
///
/// # Path
/// `lockin_mode`
///
/// # Value
/// One of the variants of [LockinMode] enclosed in double quotes.
lockin_mode: Leaf<LockinMode>,
/// Specifis the PLL time constant.
///
/// # Path
/// `pll_tc/<n>`
///
/// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
///
/// # Value
/// The PLL time constant exponent (1-31).
pll_tc: [Leaf<u32>; 2],
/// Specifies the lockin lowpass gains.
///
/// # Path
/// `lockin_k`
///
/// # Value
/// The lockin low-pass coefficients. See [`idsp::Lowpass`] for determining them.
lockin_k: Leaf<<Lowpass<2> as Filter>::Config>,
/// Specifies which harmonic to use for the lockin.
///
/// # Path
/// `lockin_harmonic`
///
/// # Value
/// Harmonic index of the LO. -1 to _de_modulate the fundamental (complex conjugate)
lockin_harmonic: Leaf<i32>,
/// Specifies the LO phase offset.
///
/// # Path
/// `lockin_phase`
///
/// # Value
/// Demodulation LO phase offset. Units are in terms of i32, where [i32::MIN] is equivalent to
/// -pi and [i32::MAX] is equivalent to +pi.
lockin_phase: Leaf<i32>,
/// Specifies DAC output mode.
///
/// # Path
/// `output_conf/<n>`
///
/// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
///
/// # Value
/// One of the variants of [Conf] enclosed in double quotes.
output_conf: [Leaf<Conf>; 2],
/// Specifies the telemetry output period in seconds.
///
/// # Path
/// `telemetry_period`
///
/// # Value
/// Any non-zero value less than 65536.
telemetry_period: Leaf<u16>,
/// Specifies the target for data streaming.
///
/// # Path
/// `stream`
///
/// # Value
/// See [StreamTarget#miniconf]
stream: Leaf<StreamTarget>,
}
impl Default for Lockin {
fn default() -> Self {
Self {
afe: [Gain::G1.into(); 2],
lockin_mode: LockinMode::External.into(),
pll_tc: [21.into(), 21.into()], // frequency and phase settling time (log2 counter cycles)
lockin_k: [0x8_0000, -0x400_0000].into(), // lockin lowpass gains
lockin_harmonic: (-1).into(), // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
lockin_phase: 0.into(), // Demodulation LO phase offset
output_conf: [Conf::InPhase.into(), Conf::Quadrature.into()],
// The default telemetry period in seconds.
telemetry_period: 10.into(),
stream: Default::default(),
}
}
}
#[rtic::app(device = stabilizer::hardware::hal::stm32, peripherals = true, dispatchers=[DCMI, JPEG, SDMMC])]
mod app {
use super::*;
#[shared]
struct Shared {
usb: UsbDevice,
network: NetworkUsers<Lockin, 2>,
settings: Settings,
active_settings: Lockin,
telemetry: TelemetryBuffer,
}
#[local]
struct Local {
usb_terminal: SerialTerminal<Settings, 3>,
sampling_timer: SamplingTimer,
digital_inputs: (DigitalInput0, DigitalInput1),
timestamper: InputStamper,
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
pll: RPLL,
lockin: idsp::Lockin<Repeat<2, Lowpass<2>>>,
source: signal_generator::SignalGenerator,
generator: FrameGenerator,
cpu_temp_sensor: stabilizer::hardware::cpu_temp_sensor::CpuTempSensor,
}
#[init]
fn init(c: init::Context) -> (Shared, Local) {
let clock = SystemTimer::new(|| Systick::now().ticks());
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup::setup::<Settings, 3>(
c.core,
c.device,
clock,
BATCH_SIZE,
SAMPLE_TICKS,
);
let mut network = NetworkUsers::new(
stabilizer.net.stack,
stabilizer.net.phy,
clock,
env!("CARGO_BIN_NAME"),
&stabilizer.settings.net,
stabilizer.metadata,
);
let generator = network.configure_streaming(StreamFormat::AdcDacData);
let shared = Shared {
network,
usb: stabilizer.usb,
telemetry: TelemetryBuffer::default(),
active_settings: stabilizer.settings.lockin.clone(),
settings: stabilizer.settings,
};
let signal_config = signal_generator::Config {
// Same frequency as batch size.
phase_increment: [1 << (32 - BATCH_SIZE_LOG2); 2],
// 1V Amplitude
amplitude: DacCode::try_from(1.0).unwrap().into(),
signal: signal_generator::Signal::Cosine,
phase_offset: 0,
};
let mut local = Local {
usb_terminal: stabilizer.usb_serial,
sampling_timer: stabilizer.adc_dac_timer,
digital_inputs: stabilizer.digital_inputs,
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
timestamper: stabilizer.timestamper,
pll: RPLL::new(SAMPLE_TICKS_LOG2 + BATCH_SIZE_LOG2),
lockin: idsp::Lockin::default(),
source: signal_generator::SignalGenerator::new(signal_config),
generator,
cpu_temp_sensor: stabilizer.temperature_sensor,
};
// Enable ADC/DAC events
local.adcs.0.start();
local.adcs.1.start();
local.dacs.0.start();
local.dacs.1.start();
// Spawn a settings and telemetry update for default settings.
settings_update::spawn().unwrap();
telemetry::spawn().unwrap();
ethernet_link::spawn().unwrap();
start::spawn().unwrap();
usb::spawn().unwrap();
// Start recording digital input timestamps.
stabilizer.timestamp_timer.start();
// Enable the timestamper.
local.timestamper.start();
(shared, local)
}
#[task(priority = 1, local=[sampling_timer])]
async fn start(c: start::Context) {
Systick::delay(100.millis()).await;
// Start sampling ADCs and DACs.
c.local.sampling_timer.start();
}
/// Main DSP processing routine.
///
/// See `dual-iir` for general notes on processing time and timing.
///
/// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal.
/// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale.
/// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available.
#[task(binds=DMA1_STR4, shared=[active_settings, telemetry], local=[adcs, dacs, lockin, timestamper, pll, generator, source], priority=3)]
#[link_section = ".itcm.process"]
fn process(c: process::Context) {
let process::SharedResources {
active_settings,
telemetry,
..
} = c.shared;
let process::LocalResources {
timestamper,
adcs: (adc0, adc1),
dacs: (dac0, dac1),
pll,
lockin,
source,
generator,
..
} = c.local;
(active_settings, telemetry).lock(|settings, telemetry| {
let (reference_phase, reference_frequency) =
match *settings.lockin_mode {
LockinMode::External => {
let timestamp =
timestamper.latest_timestamp().unwrap_or(None); // Ignore data from timer capture overflows.
let (pll_phase, pll_frequency) = pll.update(
timestamp.map(|t| t as i32),
*settings.pll_tc[0],
*settings.pll_tc[1],
);
(pll_phase, (pll_frequency >> BATCH_SIZE_LOG2) as i32)
}
LockinMode::Internal => {
// Reference phase and frequency are known.
(1i32 << 30, 1i32 << (32 - BATCH_SIZE_LOG2))
}
};
let sample_frequency =
reference_frequency.wrapping_mul(*settings.lockin_harmonic);
let sample_phase = settings.lockin_phase.wrapping_add(
reference_phase.wrapping_mul(*settings.lockin_harmonic),
);
(adc0, adc1, dac0, dac1).lock(|adc0, adc1, dac0, dac1| {
let adc_samples = [adc0, adc1];
let mut dac_samples = [dac0, dac1];
// Preserve instruction and data ordering w.r.t. DMA flag access.
fence(Ordering::SeqCst);
let output: Complex<i32> = adc_samples[0]
.iter()
// Zip in the LO phase.
.zip(Accu::new(sample_phase, sample_frequency))
// Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter)
.map(|(&sample, phase)| {
let s = (sample as i16 as i32) << 16;
lockin.update(s, phase, &settings.lockin_k)
})
// Decimate
.last()
.unwrap()
* 2; // Full scale assuming the 2f component is gone.
// Convert to DAC data.
for (channel, samples) in dac_samples.iter_mut().enumerate() {
for sample in samples.iter_mut() {
let value = match *settings.output_conf[channel] {
Conf::Magnitude => output.abs_sqr() as i32 >> 16,
Conf::Phase => output.arg() >> 16,
Conf::LogPower => output.log2() << 8,
Conf::ReferenceFrequency => {
reference_frequency >> 16
}
Conf::InPhase => output.re >> 16,
Conf::Quadrature => output.im >> 16,
Conf::Modulation => source.next().unwrap() as i32,
};
*sample = DacCode::from(value as i16).0;
}
}
// Stream the data.
const N: usize = BATCH_SIZE * size_of::<i16>()
/ size_of::<MaybeUninit<u8>>();
generator.add(|buf| {
for (data, buf) in adc_samples
.iter()
.chain(dac_samples.iter())
.zip(buf.chunks_exact_mut(N))
{
let data = unsafe {
core::slice::from_raw_parts(
data.as_ptr() as *const MaybeUninit<u8>,
N,
)
};
buf.copy_from_slice(data)
}
N * 4
});
// Update telemetry measurements.
telemetry.adcs =
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
telemetry.dacs =
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
// Preserve instruction and data ordering w.r.t. DMA flag access.
fence(Ordering::SeqCst);
});
});
}
#[idle(shared=[settings, network, usb])]
fn idle(mut c: idle::Context) -> ! {
loop {
match (&mut c.shared.network, &mut c.shared.settings)
.lock(|net, settings| net.update(&mut settings.lockin))
{
NetworkState::SettingsChanged => {
settings_update::spawn().unwrap()
}
NetworkState::Updated => {}
NetworkState::NoChange => {
// We can't sleep if USB is not in suspend.
if c.shared.usb.lock(|usb| {
usb.state()
== usb_device::device::UsbDeviceState::Suspend
}) {
cortex_m::asm::wfi();
}
}
}
}
}
#[task(priority = 1, local=[afes], shared=[network, settings, active_settings])]
async fn settings_update(mut c: settings_update::Context) {
c.shared.settings.lock(|settings| {
c.local.afes.0.set_gain(*settings.lockin.afe[0]);
c.local.afes.1.set_gain(*settings.lockin.afe[1]);
c.shared
.network
.lock(|net| net.direct_stream(*settings.lockin.stream));
c.shared
.active_settings
.lock(|current| *current = settings.lockin.clone());
});
}
#[task(priority = 1, local=[digital_inputs, cpu_temp_sensor], shared=[network, settings, telemetry])]
async fn telemetry(mut c: telemetry::Context) {
loop {
let mut telemetry = c.shared.telemetry.lock(|telemetry| *telemetry);
telemetry.digital_inputs = [
c.local.digital_inputs.0.is_high(),
c.local.digital_inputs.1.is_high(),
];
let (gains, telemetry_period) =
c.shared.settings.lock(|settings| {
(settings.lockin.afe, *settings.lockin.telemetry_period)
});
c.shared.network.lock(|net| {
net.telemetry.publish(&telemetry.finalize(
*gains[0],
*gains[1],
c.local.cpu_temp_sensor.get_temperature().unwrap(),
))
});
// Schedule the telemetry task in the future.
Systick::delay((telemetry_period as u32).secs()).await;
}
}
#[task(priority = 1, shared=[usb, settings], local=[usb_terminal])]
async fn usb(mut c: usb::Context) {
loop {
// Handle the USB serial terminal.
c.shared.usb.lock(|usb| {
usb.poll(&mut [c
.local
.usb_terminal
.interface_mut()
.inner_mut()]);
});
c.shared.settings.lock(|settings| {
if c.local.usb_terminal.poll(settings).unwrap() {
settings_update::spawn().unwrap()
}
});
Systick::delay(10.millis()).await;
}
}
#[task(priority = 1, shared=[network])]
async fn ethernet_link(mut c: ethernet_link::Context) {
loop {
c.shared.network.lock(|net| net.processor.handle_link());
Systick::delay(1.secs()).await;
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
}