1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//! # Lockin
//!
//! The `lockin` application implements a lock-in amplifier using either an external or internally
//! generated reference.
//!
//! ## Features
//! * Up to 800 kHz sampling
//! * Up to 400 kHz modulation frequency
//! * Supports internal and external reference sources:
//!     1. Internal: Generate reference internally and output on one of the channel outputs
//!     2. External: Reciprocal PLL, reference input applied to DI0.
//! * Adjustable PLL and locking time constants
//! * Adjustable phase offset and harmonic index
//! * Run-time configurable output modes (in-phase, quadrature, magnitude, log2 power, phase, frequency)
//! * Input/output data streamng via UDP
//!
//! ## Settings
//! Refer to the [Lockin] structure for documentation of run-time configurable settings
//! for this application.
//!
//! ## Telemetry
//! Refer to [Telemetry] for information about telemetry reported by this application.
//!
//! ## Livestreaming
//! This application streams raw ADC and DAC data over UDP. Refer to
//! [stabilizer::net::data_stream](../stabilizer/net/data_stream/index.html) for more information.
#![no_std]
#![no_main]

use core::{
    convert::TryFrom,
    mem::MaybeUninit,
    sync::atomic::{fence, Ordering},
};

use rtic_monotonics::Monotonic;

use fugit::ExtU32;
use mutex_trait::prelude::*;

use idsp::{Accu, Complex, ComplexExt, Filter, Lowpass, Repeat, RPLL};

use stabilizer::{
    hardware::{
        self,
        adc::{Adc0Input, Adc1Input, AdcCode},
        afe::Gain,
        dac::{Dac0Output, Dac1Output, DacCode},
        hal,
        input_stamper::InputStamper,
        signal_generator,
        timers::SamplingTimer,
        DigitalInput0, DigitalInput1, SerialTerminal, SystemTimer, Systick,
        UsbDevice, AFE0, AFE1,
    },
    net::{
        data_stream::{FrameGenerator, StreamFormat, StreamTarget},
        miniconf::Tree,
        serde::{Deserialize, Serialize},
        telemetry::TelemetryBuffer,
        NetworkState, NetworkUsers,
    },
    settings::NetSettings,
};

// The logarithm of the number of samples in each batch process. This corresponds with 2^3 samples
// per batch = 8 samples
const BATCH_SIZE_LOG2: u32 = 3;
const BATCH_SIZE: usize = 1 << BATCH_SIZE_LOG2;

// The logarithm of the number of 100MHz timer ticks between each sample. This corresponds with a
// sampling period of 2^7 = 128 ticks. At 100MHz, 10ns per tick, this corresponds to a sampling
// period of 1.28 uS or 781.25 KHz.
const SAMPLE_TICKS_LOG2: u32 = 7;
const SAMPLE_TICKS: u32 = 1 << SAMPLE_TICKS_LOG2;

#[derive(Clone, Debug, Tree)]
pub struct Settings {
    #[tree(depth = 2)]
    pub lockin: Lockin,

    #[tree(depth = 1)]
    pub net: NetSettings,
}

impl stabilizer::settings::AppSettings for Settings {
    fn new(net: NetSettings) -> Self {
        Self {
            net,
            lockin: Lockin::default(),
        }
    }

    fn net(&self) -> &NetSettings {
        &self.net
    }
}

impl serial_settings::Settings<3> for Settings {
    fn reset(&mut self) {
        *self = Self {
            lockin: Lockin::default(),
            net: NetSettings::new(self.net.mac),
        }
    }
}

#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
enum Conf {
    /// Output the lockin magnitude.
    Magnitude,
    /// Output the phase of the lockin
    Phase,
    /// Output the lockin reference frequency as a sinusoid
    ReferenceFrequency,
    /// Output the logarithmic power of the lockin
    LogPower,
    /// Output the in-phase component of the lockin signal.
    InPhase,
    /// Output the quadrature component of the lockin signal.
    Quadrature,
    /// Output the lockin internal modulation frequency as a sinusoid
    Modulation,
}

#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
enum LockinMode {
    /// Utilize an internally generated reference for demodulation
    Internal,
    /// Utilize an external modulation signal supplied to DI0
    External,
}

#[derive(Clone, Debug, Tree)]
pub struct Lockin {
    /// Configure the Analog Front End (AFE) gain.
    ///
    /// # Path
    /// `afe/<n>`
    ///
    /// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
    ///
    /// # Value
    /// Any of the variants of [Gain] enclosed in double quotes.
    #[tree(depth = 1)]
    afe: [Gain; 2],

    /// Specifies the operational mode of the lockin.
    ///
    /// # Path
    /// `lockin_mode`
    ///
    /// # Value
    /// One of the variants of [LockinMode] enclosed in double quotes.
    lockin_mode: LockinMode,

    /// Specifis the PLL time constant.
    ///
    /// # Path
    /// `pll_tc/<n>`
    ///
    /// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
    ///
    /// # Value
    /// The PLL time constant exponent (1-31).
    pll_tc: [u32; 2],

    /// Specifies the lockin lowpass gains.
    ///
    /// # Path
    /// `lockin_k`
    ///
    /// # Value
    /// The lockin low-pass coefficients. See [`idsp::Lowpass`] for determining them.
    lockin_k: <Lowpass<2> as Filter>::Config,

    /// Specifies which harmonic to use for the lockin.
    ///
    /// # Path
    /// `lockin_harmonic`
    ///
    /// # Value
    /// Harmonic index of the LO. -1 to _de_modulate the fundamental (complex conjugate)
    lockin_harmonic: i32,

    /// Specifies the LO phase offset.
    ///
    /// # Path
    /// `lockin_phase`
    ///
    /// # Value
    /// Demodulation LO phase offset. Units are in terms of i32, where [i32::MIN] is equivalent to
    /// -pi and [i32::MAX] is equivalent to +pi.
    lockin_phase: i32,

    /// Specifies DAC output mode.
    ///
    /// # Path
    /// `output_conf/<n>`
    ///
    /// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
    ///
    /// # Value
    /// One of the variants of [Conf] enclosed in double quotes.
    #[tree(depth = 1)]
    output_conf: [Conf; 2],

    /// Specifies the telemetry output period in seconds.
    ///
    /// # Path
    /// `telemetry_period`
    ///
    /// # Value
    /// Any non-zero value less than 65536.
    telemetry_period: u16,

    /// Specifies the target for data livestreaming.
    ///
    /// # Path
    /// `stream_target`
    ///
    /// # Value
    /// See [StreamTarget#miniconf]
    stream_target: StreamTarget,
}

impl Default for Lockin {
    fn default() -> Self {
        Self {
            afe: [Gain::G1; 2],

            lockin_mode: LockinMode::External,

            pll_tc: [21, 21], // frequency and phase settling time (log2 counter cycles)

            lockin_k: [0x8_0000, -0x400_0000], // lockin lowpass gains
            lockin_harmonic: -1, // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
            lockin_phase: 0,     // Demodulation LO phase offset

            output_conf: [Conf::InPhase, Conf::Quadrature],
            // The default telemetry period in seconds.
            telemetry_period: 10,

            stream_target: StreamTarget::default(),
        }
    }
}

#[rtic::app(device = stabilizer::hardware::hal::stm32, peripherals = true, dispatchers=[DCMI, JPEG, SDMMC])]
mod app {
    use super::*;

    #[shared]
    struct Shared {
        usb: UsbDevice,
        network: NetworkUsers<Lockin, 2>,
        settings: Settings,
        active_settings: Lockin,
        telemetry: TelemetryBuffer,
    }

    #[local]
    struct Local {
        usb_terminal: SerialTerminal<Settings, 3>,
        sampling_timer: SamplingTimer,
        digital_inputs: (DigitalInput0, DigitalInput1),
        timestamper: InputStamper,
        afes: (AFE0, AFE1),
        adcs: (Adc0Input, Adc1Input),
        dacs: (Dac0Output, Dac1Output),
        pll: RPLL,
        lockin: idsp::Lockin<Repeat<2, Lowpass<2>>>,
        signal_generator: signal_generator::SignalGenerator,
        generator: FrameGenerator,
        cpu_temp_sensor: stabilizer::hardware::cpu_temp_sensor::CpuTempSensor,
    }

    #[init]
    fn init(c: init::Context) -> (Shared, Local) {
        let clock = SystemTimer::new(|| Systick::now().ticks());

        // Configure the microcontroller
        let (mut stabilizer, _pounder) = hardware::setup::setup::<Settings, 3>(
            c.core,
            c.device,
            clock,
            BATCH_SIZE,
            SAMPLE_TICKS,
        );

        let mut network = NetworkUsers::new(
            stabilizer.net.stack,
            stabilizer.net.phy,
            clock,
            env!("CARGO_BIN_NAME"),
            &stabilizer.settings.net,
            stabilizer.metadata,
        );

        let generator = network.configure_streaming(StreamFormat::AdcDacData);

        let shared = Shared {
            network,
            usb: stabilizer.usb,
            telemetry: TelemetryBuffer::default(),
            active_settings: stabilizer.settings.lockin.clone(),
            settings: stabilizer.settings,
        };

        let signal_config = signal_generator::Config {
            // Same frequency as batch size.
            phase_increment: [1 << (32 - BATCH_SIZE_LOG2); 2],
            // 1V Amplitude
            amplitude: DacCode::try_from(1.0).unwrap().into(),
            signal: signal_generator::Signal::Cosine,
            phase_offset: 0,
        };

        let mut local = Local {
            usb_terminal: stabilizer.usb_serial,
            sampling_timer: stabilizer.adc_dac_timer,
            digital_inputs: stabilizer.digital_inputs,
            afes: stabilizer.afes,
            adcs: stabilizer.adcs,
            dacs: stabilizer.dacs,
            timestamper: stabilizer.timestamper,

            pll: RPLL::new(SAMPLE_TICKS_LOG2 + BATCH_SIZE_LOG2),
            lockin: idsp::Lockin::default(),
            signal_generator: signal_generator::SignalGenerator::new(
                signal_config,
            ),

            generator,
            cpu_temp_sensor: stabilizer.temperature_sensor,
        };

        // Enable ADC/DAC events
        local.adcs.0.start();
        local.adcs.1.start();
        local.dacs.0.start();
        local.dacs.1.start();

        // Spawn a settings and telemetry update for default settings.
        settings_update::spawn().unwrap();
        telemetry::spawn().unwrap();
        ethernet_link::spawn().unwrap();
        start::spawn().unwrap();
        usb::spawn().unwrap();

        // Start recording digital input timestamps.
        stabilizer.timestamp_timer.start();

        // Enable the timestamper.
        local.timestamper.start();

        (shared, local)
    }

    #[task(priority = 1, local=[sampling_timer])]
    async fn start(c: start::Context) {
        Systick::delay(100.millis()).await;
        // Start sampling ADCs and DACs.
        c.local.sampling_timer.start();
    }

    /// Main DSP processing routine.
    ///
    /// See `dual-iir` for general notes on processing time and timing.
    ///
    /// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal.
    /// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale.
    /// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available.
    #[task(binds=DMA1_STR4, shared=[active_settings, telemetry], local=[adcs, dacs, lockin, timestamper, pll, generator, signal_generator], priority=3)]
    #[link_section = ".itcm.process"]
    fn process(c: process::Context) {
        let process::SharedResources {
            active_settings,
            telemetry,
            ..
        } = c.shared;

        let process::LocalResources {
            timestamper,
            adcs: (adc0, adc1),
            dacs: (dac0, dac1),
            pll,
            lockin,
            signal_generator,
            generator,
            ..
        } = c.local;

        (active_settings, telemetry).lock(|settings, telemetry| {
            let (reference_phase, reference_frequency) =
                match settings.lockin_mode {
                    LockinMode::External => {
                        let timestamp =
                            timestamper.latest_timestamp().unwrap_or(None); // Ignore data from timer capture overflows.
                        let (pll_phase, pll_frequency) = pll.update(
                            timestamp.map(|t| t as i32),
                            settings.pll_tc[0],
                            settings.pll_tc[1],
                        );
                        (pll_phase, (pll_frequency >> BATCH_SIZE_LOG2) as i32)
                    }
                    LockinMode::Internal => {
                        // Reference phase and frequency are known.
                        (1i32 << 30, 1i32 << (32 - BATCH_SIZE_LOG2))
                    }
                };

            let sample_frequency =
                reference_frequency.wrapping_mul(settings.lockin_harmonic);
            let sample_phase = settings.lockin_phase.wrapping_add(
                reference_phase.wrapping_mul(settings.lockin_harmonic),
            );

            (adc0, adc1, dac0, dac1).lock(|adc0, adc1, dac0, dac1| {
                let adc_samples = [adc0, adc1];
                let mut dac_samples = [dac0, dac1];

                // Preserve instruction and data ordering w.r.t. DMA flag access.
                fence(Ordering::SeqCst);

                let output: Complex<i32> = adc_samples[0]
                    .iter()
                    // Zip in the LO phase.
                    .zip(Accu::new(sample_phase, sample_frequency))
                    // Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter)
                    .map(|(&sample, phase)| {
                        let s = (sample as i16 as i32) << 16;
                        lockin.update(s, phase, &settings.lockin_k)
                    })
                    // Decimate
                    .last()
                    .unwrap()
                    * 2; // Full scale assuming the 2f component is gone.

                // Convert to DAC data.
                for (channel, samples) in dac_samples.iter_mut().enumerate() {
                    for sample in samples.iter_mut() {
                        let value = match settings.output_conf[channel] {
                            Conf::Magnitude => output.abs_sqr() as i32 >> 16,
                            Conf::Phase => output.arg() >> 16,
                            Conf::LogPower => output.log2() << 8,
                            Conf::ReferenceFrequency => {
                                reference_frequency >> 16
                            }
                            Conf::InPhase => output.re >> 16,
                            Conf::Quadrature => output.im >> 16,

                            Conf::Modulation => {
                                signal_generator.next().unwrap() as i32
                            }
                        };

                        *sample = DacCode::from(value as i16).0;
                    }
                }

                // Stream the data.
                const N: usize = BATCH_SIZE * core::mem::size_of::<i16>()
                    / core::mem::size_of::<MaybeUninit<u8>>();
                generator.add(|buf| {
                    for (data, buf) in adc_samples
                        .iter()
                        .chain(dac_samples.iter())
                        .zip(buf.chunks_exact_mut(N))
                    {
                        let data = unsafe {
                            core::slice::from_raw_parts(
                                data.as_ptr() as *const MaybeUninit<u8>,
                                N,
                            )
                        };
                        buf.copy_from_slice(data)
                    }
                    N * 4
                });

                // Update telemetry measurements.
                telemetry.adcs =
                    [AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];

                telemetry.dacs =
                    [DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];

                // Preserve instruction and data ordering w.r.t. DMA flag access.
                fence(Ordering::SeqCst);
            });
        });
    }

    #[idle(shared=[settings, network, usb])]
    fn idle(mut c: idle::Context) -> ! {
        loop {
            match (&mut c.shared.network, &mut c.shared.settings)
                .lock(|net, settings| net.update(&mut settings.lockin))
            {
                NetworkState::SettingsChanged => {
                    settings_update::spawn().unwrap()
                }
                NetworkState::Updated => {}
                NetworkState::NoChange => {
                    // We can't sleep if USB is not in suspend.
                    if c.shared.usb.lock(|usb| {
                        usb.state()
                            == usb_device::device::UsbDeviceState::Suspend
                    }) {
                        cortex_m::asm::wfi();
                    }
                }
            }
        }
    }

    #[task(priority = 1, local=[afes], shared=[network, settings, active_settings])]
    async fn settings_update(mut c: settings_update::Context) {
        c.shared.settings.lock(|settings| {
            c.local.afes.0.set_gain(settings.lockin.afe[0]);
            c.local.afes.1.set_gain(settings.lockin.afe[1]);

            let target = settings.lockin.stream_target.into();
            c.shared.network.lock(|net| net.direct_stream(target));

            c.shared
                .active_settings
                .lock(|current| *current = settings.lockin.clone());
        });
    }

    #[task(priority = 1, local=[digital_inputs, cpu_temp_sensor], shared=[network, settings, telemetry])]
    async fn telemetry(mut c: telemetry::Context) {
        loop {
            let mut telemetry: TelemetryBuffer =
                c.shared.telemetry.lock(|telemetry| *telemetry);

            telemetry.digital_inputs = [
                c.local.digital_inputs.0.is_high(),
                c.local.digital_inputs.1.is_high(),
            ];

            let (gains, telemetry_period) =
                c.shared.settings.lock(|settings| {
                    (settings.lockin.afe, settings.lockin.telemetry_period)
                });

            c.shared.network.lock(|net| {
                net.telemetry.publish(&telemetry.finalize(
                    gains[0],
                    gains[1],
                    c.local.cpu_temp_sensor.get_temperature().unwrap(),
                ))
            });

            // Schedule the telemetry task in the future.
            Systick::delay((telemetry_period as u32).secs()).await;
        }
    }

    #[task(priority = 1, shared=[usb, settings], local=[usb_terminal])]
    async fn usb(mut c: usb::Context) {
        loop {
            // Handle the USB serial terminal.
            c.shared.usb.lock(|usb| {
                usb.poll(&mut [c
                    .local
                    .usb_terminal
                    .interface_mut()
                    .inner_mut()]);
            });

            c.shared.settings.lock(|settings| {
                if c.local.usb_terminal.process(settings).unwrap() {
                    settings_update::spawn().unwrap()
                }
            });

            Systick::delay(10.millis()).await;
        }
    }

    #[task(priority = 1, shared=[network])]
    async fn ethernet_link(mut c: ethernet_link::Context) {
        loop {
            c.shared.network.lock(|net| net.processor.handle_link());
            Systick::delay(1.secs()).await;
        }
    }

    #[task(binds = ETH, priority = 1)]
    fn eth(_: eth::Context) {
        unsafe { hal::ethernet::interrupt_handler() }
    }
}