idsp/svf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
//! State variable filter
use num_traits::{Float, FloatConst};
use serde::{Deserialize, Serialize};
/// Second order state variable filter state
pub struct State<T> {
/// Lowpass output
pub lp: T,
/// Highpass output
pub hp: T,
/// Bandpass output
pub bp: T,
}
impl<T: Float> State<T> {
/// Bandreject (notch) output
pub fn br(&self) -> T {
self.hp + self.lp
}
}
/// State variable filter
///
/// <https://www.earlevel.com/main/2003/03/02/the-digital-state-variable-filter/>
#[derive(Copy, Clone, Debug, Deserialize, Serialize, PartialEq, PartialOrd)]
pub struct Svf<T> {
f: T,
q: T,
}
impl<T: Float + FloatConst> Svf<T> {
/// Set the critical frequency
///
/// In units of the sample frequency.
pub fn set_frequency(&mut self, f0: T) {
self.f = (T::one() + T::one()) * (T::PI() * f0).sin();
}
/// Set the Q parameter
pub fn set_q(&mut self, q: T) {
self.q = T::one() / q;
}
/// Update the filter
///
/// Ingest an input sample and update state correspondingly.
/// Selected output(s) are available from [`State`].
pub fn update(&self, s: &mut State<T>, x0: T) {
s.lp = s.bp * self.f + s.lp;
s.hp = x0 - s.lp - s.bp * self.q;
s.bp = s.hp * self.f + s.bp;
}
}