idsp/
rpll.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/// Reciprocal PLL.
///
/// Consumes noisy, quantized timestamps of a reference signal and reconstructs
/// the phase and frequency of the update() invocations with respect to (and in units of
/// 1 << 32 of) that reference.
/// In other words, `update()` rate relative to reference frequency,
/// `u32::MAX` corresponding to both being equal.
#[derive(Copy, Clone, Default)]
pub struct RPLL {
    dt2: u32, // 1 << dt2 is the counter rate to update() rate ratio
    x: i32,   // previous timestamp
    ff: u32,  // current frequency estimate from frequency loop
    f: u32,   // current frequency estimate from both frequency and phase loop
    y: i32,   // current phase estimate
}

impl RPLL {
    /// Create a new RPLL instance.
    ///
    /// Args:
    /// * dt2: inverse update() rate. 1 << dt2 is the counter rate to update() rate ratio.
    ///
    /// Returns:
    /// Initialized RPLL instance.
    pub fn new(dt2: u32) -> Self {
        Self {
            dt2,
            ..Default::default()
        }
    }

    /// Advance the RPLL and optionally supply a new timestamp.
    ///
    /// Args:
    /// * input: Optional new timestamp (wrapping around at the i32 boundary).
    ///   There can be at most one timestamp per `update()` cycle (1 << dt2 counter cycles).
    /// * shift_frequency: Frequency lock settling time. 1 << shift_frequency is
    ///   frequency lock settling time in counter periods. The settling time must be larger
    ///   than the signal period to lock to.
    /// * shift_phase: Phase lock settling time. Usually one less than
    ///   `shift_frequency` (see there).
    ///
    /// Returns:
    /// A tuple containing the current phase (wrapping at the i32 boundary, pi) and
    /// frequency.
    pub fn update(
        &mut self,
        input: Option<i32>,
        shift_frequency: u32,
        shift_phase: u32,
    ) -> (i32, u32) {
        debug_assert!(shift_frequency >= self.dt2);
        debug_assert!(shift_phase >= self.dt2);
        // Advance phase
        self.y = self.y.wrapping_add(self.f as i32);
        if let Some(x) = input {
            // Reference period in counter cycles
            let dx = x.wrapping_sub(self.x);
            // Store timestamp for next time.
            self.x = x;
            // Phase using the current frequency estimate
            let p_sig_64 = self.ff as u64 * dx as u64;
            // Add half-up rounding bias and apply gain/attenuation
            let p_sig =
                ((p_sig_64 + (1u32 << (shift_frequency - 1)) as u64) >> shift_frequency) as u32;
            // Reference phase (1 << dt2 full turns) with gain/attenuation applied
            let p_ref = 1u32 << (32 + self.dt2 - shift_frequency);
            // Update frequency lock
            self.ff = self.ff.wrapping_add(p_ref.wrapping_sub(p_sig));
            // Time in counter cycles between timestamp and "now"
            let dt = (x.wrapping_neg() & ((1 << self.dt2) - 1)) as u32;
            // Reference phase estimate "now"
            let y_ref = (self.f >> self.dt2).wrapping_mul(dt) as i32;
            // Phase error with gain
            let dy = y_ref.wrapping_sub(self.y) >> (shift_phase - self.dt2);
            // Current frequency estimate from frequency lock and phase error
            self.f = self.ff.wrapping_add(dy as u32);
        }
        (self.y, self.f)
    }

    /// Return the current phase estimate
    pub fn phase(&self) -> i32 {
        self.y
    }

    /// Return the current frequency estimate
    pub fn frequency(&self) -> u32 {
        self.f
    }
}

#[cfg(test)]
mod test {
    use super::RPLL;
    use rand::{prelude::*, rngs::StdRng};
    use std::vec::Vec;

    #[test]
    fn make() {
        let _ = RPLL::new(8);
    }

    struct Harness {
        rpll: RPLL,
        shift_frequency: u32,
        shift_phase: u32,
        noise: i32,
        period: i32,
        next: i32,
        next_noisy: i32,
        time: i32,
        rng: StdRng,
    }

    impl Harness {
        fn default() -> Self {
            Self {
                rpll: RPLL::new(8),
                shift_frequency: 9,
                shift_phase: 8,
                noise: 0,
                period: 333,
                next: 111,
                next_noisy: 111,
                time: 0,
                rng: StdRng::seed_from_u64(42),
            }
        }

        fn run(&mut self, n: usize) -> (Vec<f32>, Vec<f32>) {
            assert!(self.period >= 1 << self.rpll.dt2);
            assert!(self.period < 1 << self.shift_frequency);
            assert!(self.period < 1 << self.shift_phase + 1);

            let mut y = Vec::<f32>::new();
            let mut f = Vec::<f32>::new();
            for _ in 0..n {
                let timestamp = if self.time - self.next_noisy >= 0 {
                    assert!(self.time - self.next_noisy < 1 << self.rpll.dt2);
                    self.next = self.next.wrapping_add(self.period);
                    let timestamp = self.next_noisy;
                    let p_noise = self.rng.gen_range(-self.noise..=self.noise);
                    self.next_noisy = self.next.wrapping_add(p_noise);
                    Some(timestamp)
                } else {
                    None
                };
                let (yi, fi) = self
                    .rpll
                    .update(timestamp, self.shift_frequency, self.shift_phase);

                let y_ref = (self.time.wrapping_sub(self.next) as i64 * (1i64 << 32)
                    / self.period as i64) as i32;
                // phase error
                y.push(yi.wrapping_sub(y_ref) as f32 / 2f32.powi(32));

                let p_ref = 1 << 32 + self.rpll.dt2;
                let p_sig = fi as u64 * self.period as u64;
                // relative frequency error
                f.push(
                    p_sig.wrapping_sub(p_ref) as i64 as f32 / 2f32.powi(32 + self.rpll.dt2 as i32),
                );

                // advance time
                self.time = self.time.wrapping_add(1 << self.rpll.dt2);
            }
            (y, f)
        }

        fn measure(&mut self, n: usize, limits: [f32; 4]) {
            let t_settle = (1 << self.shift_frequency - self.rpll.dt2 + 4)
                + (1 << self.shift_phase - self.rpll.dt2 + 4);
            self.run(t_settle);

            let (y, f) = self.run(n);
            // println!("{:?} {:?}", f, y);

            let fm = f.iter().copied().sum::<f32>() / f.len() as f32;
            let fs = f.iter().map(|f| (*f - fm).powi(2)).sum::<f32>().sqrt() / f.len() as f32;
            let ym = y.iter().copied().sum::<f32>() / y.len() as f32;
            let ys = y.iter().map(|y| (*y - ym).powi(2)).sum::<f32>().sqrt() / y.len() as f32;

            println!("f: {:.2e}±{:.2e}; y: {:.2e}±{:.2e}", fm, fs, ym, ys);

            let m = [fm, fs, ym, ys];

            print!("relative: ");
            for i in 0..m.len() {
                let rel = m[i].abs() / limits[i].abs();
                print!("{:.2e} ", rel);
                assert!(
                    rel <= 1.,
                    "idx {}, have |{:.2e}| > limit {:.2e}",
                    i,
                    m[i],
                    limits[i]
                );
            }
            println!();
        }
    }

    #[test]
    fn default() {
        let mut h = Harness::default();

        h.measure(1 << 16, [1e-11, 4e-8, 2e-8, 2e-8]);
    }

    #[test]
    fn noisy() {
        let mut h = Harness::default();
        h.noise = 10;
        h.shift_frequency = 23;
        h.shift_phase = 22;

        h.measure(1 << 16, [3e-9, 3e-6, 4e-4, 2e-4]);
    }

    #[test]
    fn narrow_fast() {
        let mut h = Harness::default();
        h.period = 990;
        h.next = 351;
        h.next_noisy = h.next;
        h.noise = 5;
        h.shift_frequency = 23;
        h.shift_phase = 22;

        h.measure(1 << 16, [2e-9, 2e-6, 1e-3, 1e-4]);
    }

    #[test]
    fn narrow_slow() {
        let mut h = Harness::default();
        h.period = 1818181;
        h.next = 35281;
        h.next_noisy = h.next;
        h.noise = 1000;
        h.shift_frequency = 23;
        h.shift_phase = 22;

        h.measure(1 << 16, [2e-5, 6e-4, 2e-4, 2e-4]);
    }

    #[test]
    fn wide_fast() {
        let mut h = Harness::default();
        h.period = 990;
        h.next = 351;
        h.next_noisy = h.next;
        h.noise = 5;
        h.shift_frequency = 10;
        h.shift_phase = 9;

        h.measure(1 << 16, [5e-7, 3e-2, 2e-5, 2e-2]);
    }

    #[test]
    fn wide_slow() {
        let mut h = Harness::default();
        h.period = 1818181;
        h.next = 35281;
        h.next_noisy = h.next;
        h.noise = 1000;
        h.shift_frequency = 21;
        h.shift_phase = 20;

        h.measure(1 << 16, [2e-4, 6e-3, 2e-4, 2e-3]);
    }

    #[test]
    fn batch_fast_narrow() {
        let mut h = Harness::default();
        h.rpll.dt2 = 8 + 3;
        h.period = 2431;
        h.next = 35281;
        h.next_noisy = h.next;
        h.noise = 100;
        h.shift_frequency = 23;
        h.shift_phase = 23;

        h.measure(1 << 16, [1e-8, 2e-5, 6e-4, 6e-4]);
    }
}