1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/// Reciprocal PLL.
///
/// Consumes noisy, quantized timestamps of a reference signal and reconstructs
/// the phase and frequency of the update() invocations with respect to (and in units of
/// 1 << 32 of) that reference.
/// In other words, `update()` rate ralative to reference frequency,
/// `u32::MAX` corresponding to both being equal.
#[derive(Copy, Clone, Default)]
pub struct RPLL {
dt2: u32, // 1 << dt2 is the counter rate to update() rate ratio
x: i32, // previous timestamp
ff: u32, // current frequency estimate from frequency loop
f: u32, // current frequency estimate from both frequency and phase loop
y: i32, // current phase estimate
}
impl RPLL {
/// Create a new RPLL instance.
///
/// Args:
/// * dt2: inverse update() rate. 1 << dt2 is the counter rate to update() rate ratio.
///
/// Returns:
/// Initialized RPLL instance.
pub fn new(dt2: u32) -> Self {
Self {
dt2,
..Default::default()
}
}
/// Advance the RPLL and optionally supply a new timestamp.
///
/// Args:
/// * input: Optional new timestamp (wrapping around at the i32 boundary).
/// There can be at most one timestamp per `update()` cycle (1 << dt2 counter cycles).
/// * shift_frequency: Frequency lock settling time. 1 << shift_frequency is
/// frequency lock settling time in counter periods. The settling time must be larger
/// than the signal period to lock to.
/// * shift_phase: Phase lock settling time. Usually one less than
/// `shift_frequency` (see there).
///
/// Returns:
/// A tuple containing the current phase (wrapping at the i32 boundary, pi) and
/// frequency.
pub fn update(
&mut self,
input: Option<i32>,
shift_frequency: u32,
shift_phase: u32,
) -> (i32, u32) {
debug_assert!(shift_frequency >= self.dt2);
debug_assert!(shift_phase >= self.dt2);
// Advance phase
self.y = self.y.wrapping_add(self.f as i32);
if let Some(x) = input {
// Reference period in counter cycles
let dx = x.wrapping_sub(self.x);
// Store timestamp for next time.
self.x = x;
// Phase using the current frequency estimate
let p_sig_64 = self.ff as u64 * dx as u64;
// Add half-up rounding bias and apply gain/attenuation
let p_sig =
((p_sig_64 + (1u32 << (shift_frequency - 1)) as u64) >> shift_frequency) as u32;
// Reference phase (1 << dt2 full turns) with gain/attenuation applied
let p_ref = 1u32 << (32 + self.dt2 - shift_frequency);
// Update frequency lock
self.ff = self.ff.wrapping_add(p_ref.wrapping_sub(p_sig));
// Time in counter cycles between timestamp and "now"
let dt = (x.wrapping_neg() & ((1 << self.dt2) - 1)) as u32;
// Reference phase estimate "now"
let y_ref = (self.f >> self.dt2).wrapping_mul(dt) as i32;
// Phase error with gain
let dy = y_ref.wrapping_sub(self.y) >> (shift_phase - self.dt2);
// Current frequency estimate from frequency lock and phase error
self.f = self.ff.wrapping_add(dy as u32);
}
(self.y, self.f)
}
/// Return the current phase estimate
pub fn phase(&self) -> i32 {
self.y
}
/// Return the current frequency estimate
pub fn frequency(&self) -> u32 {
self.f
}
}
#[cfg(test)]
mod test {
use super::RPLL;
use rand::{prelude::*, rngs::StdRng};
use std::vec::Vec;
#[test]
fn make() {
let _ = RPLL::new(8);
}
struct Harness {
rpll: RPLL,
shift_frequency: u32,
shift_phase: u32,
noise: i32,
period: i32,
next: i32,
next_noisy: i32,
time: i32,
rng: StdRng,
}
impl Harness {
fn default() -> Self {
Self {
rpll: RPLL::new(8),
shift_frequency: 9,
shift_phase: 8,
noise: 0,
period: 333,
next: 111,
next_noisy: 111,
time: 0,
rng: StdRng::seed_from_u64(42),
}
}
fn run(&mut self, n: usize) -> (Vec<f32>, Vec<f32>) {
assert!(self.period >= 1 << self.rpll.dt2);
assert!(self.period < 1 << self.shift_frequency);
assert!(self.period < 1 << self.shift_phase + 1);
let mut y = Vec::<f32>::new();
let mut f = Vec::<f32>::new();
for _ in 0..n {
let timestamp = if self.time - self.next_noisy >= 0 {
assert!(self.time - self.next_noisy < 1 << self.rpll.dt2);
self.next = self.next.wrapping_add(self.period);
let timestamp = self.next_noisy;
let p_noise = self.rng.gen_range(-self.noise..=self.noise);
self.next_noisy = self.next.wrapping_add(p_noise);
Some(timestamp)
} else {
None
};
let (yi, fi) = self
.rpll
.update(timestamp, self.shift_frequency, self.shift_phase);
let y_ref = (self.time.wrapping_sub(self.next) as i64 * (1i64 << 32)
/ self.period as i64) as i32;
// phase error
y.push(yi.wrapping_sub(y_ref) as f32 / 2f32.powi(32));
let p_ref = 1 << 32 + self.rpll.dt2;
let p_sig = fi as u64 * self.period as u64;
// relative frequency error
f.push(
p_sig.wrapping_sub(p_ref) as i64 as f32 / 2f32.powi(32 + self.rpll.dt2 as i32),
);
// advance time
self.time = self.time.wrapping_add(1 << self.rpll.dt2);
}
(y, f)
}
fn measure(&mut self, n: usize, limits: [f32; 4]) {
let t_settle = (1 << self.shift_frequency - self.rpll.dt2 + 4)
+ (1 << self.shift_phase - self.rpll.dt2 + 4);
self.run(t_settle);
let (y, f) = self.run(n);
// println!("{:?} {:?}", f, y);
let fm = f.iter().copied().sum::<f32>() / f.len() as f32;
let fs = f.iter().map(|f| (*f - fm).powi(2)).sum::<f32>().sqrt() / f.len() as f32;
let ym = y.iter().copied().sum::<f32>() / y.len() as f32;
let ys = y.iter().map(|y| (*y - ym).powi(2)).sum::<f32>().sqrt() / y.len() as f32;
println!("f: {:.2e}±{:.2e}; y: {:.2e}±{:.2e}", fm, fs, ym, ys);
let m = [fm, fs, ym, ys];
print!("relative: ");
for i in 0..m.len() {
let rel = m[i].abs() / limits[i].abs();
print!("{:.2e} ", rel);
assert!(
rel <= 1.,
"idx {}, have |{:.2e}| > limit {:.2e}",
i,
m[i],
limits[i]
);
}
println!();
}
}
#[test]
fn default() {
let mut h = Harness::default();
h.measure(1 << 16, [1e-11, 4e-8, 2e-8, 2e-8]);
}
#[test]
fn noisy() {
let mut h = Harness::default();
h.noise = 10;
h.shift_frequency = 23;
h.shift_phase = 22;
h.measure(1 << 16, [3e-9, 3e-6, 4e-4, 2e-4]);
}
#[test]
fn narrow_fast() {
let mut h = Harness::default();
h.period = 990;
h.next = 351;
h.next_noisy = h.next;
h.noise = 5;
h.shift_frequency = 23;
h.shift_phase = 22;
h.measure(1 << 16, [2e-9, 2e-6, 1e-3, 1e-4]);
}
#[test]
fn narrow_slow() {
let mut h = Harness::default();
h.period = 1818181;
h.next = 35281;
h.next_noisy = h.next;
h.noise = 1000;
h.shift_frequency = 23;
h.shift_phase = 22;
h.measure(1 << 16, [2e-5, 6e-4, 2e-4, 2e-4]);
}
#[test]
fn wide_fast() {
let mut h = Harness::default();
h.period = 990;
h.next = 351;
h.next_noisy = h.next;
h.noise = 5;
h.shift_frequency = 10;
h.shift_phase = 9;
h.measure(1 << 16, [5e-7, 3e-2, 2e-5, 2e-2]);
}
#[test]
fn wide_slow() {
let mut h = Harness::default();
h.period = 1818181;
h.next = 35281;
h.next_noisy = h.next;
h.noise = 1000;
h.shift_frequency = 21;
h.shift_phase = 20;
h.measure(1 << 16, [2e-4, 6e-3, 2e-4, 2e-3]);
}
#[test]
fn batch_fast_narrow() {
let mut h = Harness::default();
h.rpll.dt2 = 8 + 3;
h.period = 2431;
h.next = 35281;
h.next_noisy = h.next;
h.noise = 100;
h.shift_frequency = 23;
h.shift_phase = 23;
h.measure(1 << 16, [1e-8, 2e-5, 6e-4, 6e-4]);
}
}