idsp/num.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
use num_traits::{AsPrimitive, Float, Num};
/// Helper trait unifying fixed point and floating point coefficients/samples
pub trait Coefficient: 'static + Copy + Num + AsPrimitive<Self::ACCU> {
/// Multiplicative identity
const ONE: Self;
/// Negative multiplicative identity, equal to `-Self::ONE`.
const NEG_ONE: Self;
/// Additive identity
const ZERO: Self;
/// Lowest value
const MIN: Self;
/// Highest value
const MAX: Self;
/// Accumulator type
type ACCU: AsPrimitive<Self> + Num;
/// Proper scaling and potentially using a wide accumulator.
/// Clamp `self` such that `min <= self <= max`.
/// Undefined result if `max < min`.
fn macc(self, s: Self::ACCU, min: Self, max: Self, e1: Self) -> (Self, Self);
/// Clamp to between min and max
///
/// Undefined if `min > max`.
fn clip(self, min: Self, max: Self) -> Self;
/// Multiplication (scaled)
fn mul_scaled(self, other: Self) -> Self;
/// Division (scaled)
fn div_scaled(self, other: Self) -> Self;
/// Scale and quantize a floating point value.
fn quantize<C>(value: C) -> Self
where
Self: AsPrimitive<C>,
C: Float + AsPrimitive<Self>;
// TODO: range check and Result
}
macro_rules! impl_float {
($T:ty) => {
impl Coefficient for $T {
const ONE: Self = 1.0;
const NEG_ONE: Self = -1.0;
const ZERO: Self = 0.0;
const MIN: Self = <$T>::NEG_INFINITY;
const MAX: Self = <$T>::INFINITY;
type ACCU = Self;
#[inline]
fn macc(self, s: Self::ACCU, min: Self, max: Self, _e1: Self) -> (Self, Self) {
((self + s).clip(min, max), 0.0)
}
#[inline]
fn clip(self, min: Self, max: Self) -> Self {
// <$T>::clamp() is slow and checks
self.max(min).min(max)
}
#[inline]
fn div_scaled(self, other: Self) -> Self {
self / other
}
#[inline]
fn mul_scaled(self, other: Self) -> Self {
self * other
}
#[inline]
fn quantize<C: Float + AsPrimitive<Self>>(value: C) -> Self {
value.as_()
}
}
};
}
impl_float!(f32);
impl_float!(f64);
macro_rules! impl_int {
($T:ty, $U:ty, $A:ty, $Q:literal) => {
impl Coefficient for $T {
const ONE: Self = 1 << $Q;
const NEG_ONE: Self = -1 << $Q;
const ZERO: Self = 0;
const MIN: Self = <$T>::MIN;
const MAX: Self = <$T>::MAX;
type ACCU = $A;
#[inline]
fn macc(self, mut s: Self::ACCU, min: Self, max: Self, e1: Self) -> (Self, Self) {
const S: usize = core::mem::size_of::<$T>() * 8;
// Guard bits
const G: usize = S - $Q;
// Combine offset (u << $Q) with previous quantization error e1
s += (((self >> G) as $A) << S) | (((self << $Q) | e1) as $U as $A);
// Ord::clamp() is slow and checks
// This clamping truncates the lowest G bits of the value and the limits.
debug_assert_eq!(min & ((1 << G) - 1), 0);
debug_assert_eq!(max & ((1 << G) - 1), (1 << G) - 1);
let y0 = if (s >> S) as $T < (min >> G) {
min
} else if (s >> S) as $T > (max >> G) {
max
} else {
(s >> $Q) as $T
};
// Quantization error
let e0 = s as $T & ((1 << $Q) - 1);
(y0, e0)
}
#[inline]
fn clip(self, min: Self, max: Self) -> Self {
// Ord::clamp() is slow and checks
if self < min {
min
} else if self > max {
max
} else {
self
}
}
#[inline]
fn div_scaled(self, other: Self) -> Self {
(((self as $A) << $Q) / other as $A) as $T
}
#[inline]
fn mul_scaled(self, other: Self) -> Self {
(((1 << ($Q - 1)) + self as $A * other as $A) >> $Q) as $T
}
#[inline]
fn quantize<C>(value: C) -> Self
where
Self: AsPrimitive<C>,
C: Float + AsPrimitive<Self>,
{
(value * (1 << $Q).as_()).round().as_()
}
}
};
}
// Q2.X chosen to be able to exactly and inclusively represent -2 as `-1 << X + 1`
// This is necessary to meet a1 = -2
// It also create 2 guard bits for clamping in the accumulator which is often enough.
impl_int!(i8, u8, i16, 6);
impl_int!(i16, u16, i32, 14);
impl_int!(i32, u32, i64, 30);
impl_int!(i64, u64, i128, 62);