idsp/iir/pid.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
use num_traits::{AsPrimitive, Float};
use serde::{Deserialize, Serialize};
use crate::Coefficient;
/// PID controller builder
///
/// Builds `Biquad` from action gains, gain limits, input offset and output limits.
///
/// ```
/// # use idsp::iir::*;
/// let b: Biquad<f32> = Pid::default()
/// .period(1e-3)
/// .gain(Action::Ki, 1e-3)
/// .gain(Action::Kp, 1.0)
/// .gain(Action::Kd, 1e2)
/// .limit(Action::Ki, 1e3)
/// .limit(Action::Kd, 1e1)
/// .build()
/// .unwrap()
/// .into();
/// ```
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Serialize, Deserialize)]
pub struct Pid<T> {
period: T,
gains: [T; 5],
limits: [T; 5],
}
impl<T: Float> Default for Pid<T> {
fn default() -> Self {
Self {
period: T::one(),
gains: [T::zero(); 5],
limits: [T::infinity(); 5],
}
}
}
/// [`Pid::build()`] errors
#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Serialize, Deserialize)]
#[non_exhaustive]
pub enum PidError {
/// The action gains cover more than three successive orders
OrderRange,
}
/// PID action
///
/// This enumerates the five possible PID style actions of a [`crate::iir::Biquad`]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Serialize, Deserialize)]
pub enum Action {
/// Double integrating, -40 dB per decade
Kii = 0,
/// Integrating, -20 dB per decade
Ki = 1,
/// Proportional
Kp = 2,
/// Derivative=, 20 dB per decade
Kd = 3,
/// Double derivative, 40 dB per decade
Kdd = 4,
}
impl<T: Float> Pid<T> {
/// Sample period
///
/// # Arguments
/// * `period`: Sample period in some units, e.g. SI seconds
pub fn period(&mut self, period: T) -> &mut Self {
self.period = period;
self
}
/// Gain for a given action
///
/// Gain units are `output/input * time.powi(order)` where
/// * `output` are output (`y`) units
/// * `input` are input (`x`) units
/// * `time` are sample period units, e.g. SI seconds
/// * `order` is the action order: the frequency exponent
/// (`-1` for integrating, `0` for proportional, etc.)
///
/// Note that inverse time units correspond to angular frequency units.
/// Gains are accurate in the low frequency limit. Towards Nyquist, the
/// frequency response is warped.
///
/// Note that limit signs and gain signs should match.
///
/// ```
/// # use idsp::iir::*;
/// let tau = 1e-3;
/// let ki = 1e-4;
/// let i: Biquad<f32> = Pid::default()
/// .period(tau)
/// .gain(Action::Ki, ki)
/// .build()
/// .unwrap()
/// .into();
/// let x0 = 5.0;
/// let y0 = i.update(&mut [0.0; 4], x0);
/// assert!((y0 / (x0 * tau * ki) - 1.0).abs() < 2.0 * f32::EPSILON);
/// ```
///
/// # Arguments
/// * `action`: Action to control
/// * `gain`: Gain value
pub fn gain(&mut self, action: Action, gain: T) -> &mut Self {
self.gains[action as usize] = gain;
self
}
/// Gain limit for a given action
///
/// Gain limit units are `output/input`. See also [`Pid::gain()`].
/// Multiple gains and limits may interact and lead to peaking.
///
/// Note that limit signs and gain signs should match and that the
/// default limits are positive infinity.
///
/// ```
/// # use idsp::iir::*;
/// let ki_limit = 1e3;
/// let i: Biquad<f32> = Pid::default()
/// .gain(Action::Ki, 8.0)
/// .limit(Action::Ki, ki_limit)
/// .build()
/// .unwrap()
/// .into();
/// let mut xy = [0.0; 4];
/// let x0 = 5.0;
/// for _ in 0..1000 {
/// i.update(&mut xy, x0);
/// }
/// let y0 = i.update(&mut xy, x0);
/// assert!((y0 / (x0 * ki_limit) - 1.0f32).abs() < 1e-3);
/// ```
///
/// # Arguments
/// * `action`: Action to limit in gain
/// * `limit`: Gain limit
pub fn limit(&mut self, action: Action, limit: T) -> &mut Self {
self.limits[action as usize] = limit;
self
}
/// Perform checks, compute coefficients and return `Biquad`.
///
/// No attempt is made to detect NaNs, non-finite gains, non-positive period,
/// zero gain limits, or gain/limit sign mismatches.
/// These will consequently result in NaNs/infinities, peaking, or notches in
/// the Biquad coefficients.
///
/// Gain limits for zero gain actions or for proportional action are ignored.
///
/// ```
/// # use idsp::iir::*;
/// let i: Biquad<f32> = Pid::default().gain(Action::Kp, 3.0).build().unwrap().into();
/// assert_eq!(i, Biquad::proportional(3.0));
/// ```
///
/// # Panic
/// Will panic in debug mode on fixed point coefficient overflow.
pub fn build<C: Coefficient + AsPrimitive<T>>(&self) -> Result<[C; 5], PidError>
where
T: AsPrimitive<C>,
{
const KP: usize = Action::Kp as usize;
// Determine highest denominator (feedback, `a`) order
let low = self
.gains
.iter()
.take(KP)
.position(|g| !g.is_zero())
.unwrap_or(KP);
if self.gains.iter().skip(low + 3).any(|g| !g.is_zero()) {
return Err(PidError::OrderRange);
}
// Scale gains, compute limits
let mut zi = self.period.powi(KP as i32 - low as i32);
let p = self.period.recip();
let mut gl = [[T::zero(); 2]; 3];
for (gli, (i, (ggi, lli))) in gl.iter_mut().zip(
self.gains
.iter()
.zip(self.limits.iter())
.enumerate()
.skip(low),
) {
gli[0] = *ggi * zi;
gli[1] = if i == KP { T::one() } else { gli[0] / *lli };
zi = zi * p;
}
let a0i = T::one() / (gl[0][1] + gl[1][1] + gl[2][1]);
// Derivative/integration kernels
let kernels = [
[C::one(), C::zero(), C::zero()],
[C::one(), C::zero() - C::one(), C::zero()],
[C::one(), C::zero() - C::one() - C::one(), C::one()],
];
// Coefficients
let mut ba = [[C::ZERO; 2]; 3];
for (gli, ki) in gl.iter().zip(kernels.iter()) {
// Quantize the gains and not the coefficients
let (g, l) = (C::quantize(gli[0] * a0i), C::quantize(gli[1] * a0i));
for (j, baj) in ba.iter_mut().enumerate() {
*baj = [baj[0] + ki[j] * g, baj[1] + ki[j] * l];
}
}
Ok([ba[0][0], ba[1][0], ba[2][0], ba[1][1], ba[2][1]])
}
}
#[cfg(test)]
mod test {
use crate::iir::*;
#[test]
fn pid() {
let b: Biquad<f32> = Pid::default()
.period(1.0)
.gain(Action::Ki, 1e-3)
.gain(Action::Kp, 1.0)
.gain(Action::Kd, 1e2)
.limit(Action::Ki, 1e3)
.limit(Action::Kd, 1e1)
.build()
.unwrap()
.into();
let want = [
9.18190826,
-18.27272561,
9.09090826,
-1.90909074,
0.90909083,
];
for (ba_have, ba_want) in b.ba().iter().zip(want.iter()) {
assert!(
(ba_have / ba_want - 1.0).abs() < 2.0 * f32::EPSILON,
"have {:?} != want {want:?}",
b.ba(),
);
}
}
#[test]
fn pid_i32() {
let b: Biquad<i32> = Pid::default()
.period(1.0)
.gain(Action::Ki, 1e-5)
.gain(Action::Kp, 1e-2)
.gain(Action::Kd, 1e0)
.limit(Action::Ki, 1e1)
.limit(Action::Kd, 1e-1)
.build()
.unwrap()
.into();
println!("{b:?}");
}
#[test]
fn units() {
let ki = 5e-2;
let tau = 3e-3;
let b: Biquad<f32> = Pid::default()
.period(tau)
.gain(Action::Ki, ki)
.build()
.unwrap()
.into();
let mut xy = [0.0; 4];
for i in 1..10 {
let y_have = b.update(&mut xy, 1.0);
let y_want = (i as f32) * tau * ki;
assert!(
(y_have / y_want - 1.0).abs() < 3.0 * f32::EPSILON,
"{i}: have {y_have} != {y_want}"
);
}
}
}