idsp/iir/
pid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
use num_traits::{AsPrimitive, Float};
use serde::{Deserialize, Serialize};

use crate::Coefficient;

/// PID controller builder
///
/// Builds `Biquad` from action gains, gain limits, input offset and output limits.
///
/// ```
/// # use idsp::iir::*;
/// let b: Biquad<f32> = Pid::default()
///     .period(1e-3)
///     .gain(Action::Ki, 1e-3)
///     .gain(Action::Kp, 1.0)
///     .gain(Action::Kd, 1e2)
///     .limit(Action::Ki, 1e3)
///     .limit(Action::Kd, 1e1)
///     .build()
///     .unwrap()
///     .into();
/// ```
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Serialize, Deserialize)]
pub struct Pid<T> {
    period: T,
    gains: [T; 5],
    limits: [T; 5],
}

impl<T: Float> Default for Pid<T> {
    fn default() -> Self {
        Self {
            period: T::one(),
            gains: [T::zero(); 5],
            limits: [T::infinity(); 5],
        }
    }
}

/// [`Pid::build()`] errors
#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Serialize, Deserialize)]
#[non_exhaustive]
pub enum PidError {
    /// The action gains cover more than three successive orders
    OrderRange,
}

/// PID action
///
/// This enumerates the five possible PID style actions of a [`crate::iir::Biquad`]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Serialize, Deserialize)]
pub enum Action {
    /// Double integrating, -40 dB per decade
    Kii = 0,
    /// Integrating, -20 dB per decade
    Ki = 1,
    /// Proportional
    Kp = 2,
    /// Derivative=, 20 dB per decade
    Kd = 3,
    /// Double derivative, 40 dB per decade
    Kdd = 4,
}

impl<T: Float> Pid<T> {
    /// Sample period
    ///
    /// # Arguments
    /// * `period`: Sample period in some units, e.g. SI seconds
    pub fn period(&mut self, period: T) -> &mut Self {
        self.period = period;
        self
    }

    /// Gain for a given action
    ///
    /// Gain units are `output/input * time.powi(order)` where
    /// * `output` are output (`y`) units
    /// * `input` are input (`x`) units
    /// * `time` are sample period units, e.g. SI seconds
    /// * `order` is the action order: the frequency exponent
    ///    (`-1` for integrating, `0` for proportional, etc.)
    ///
    /// Note that inverse time units correspond to angular frequency units.
    /// Gains are accurate in the low frequency limit. Towards Nyquist, the
    /// frequency response is warped.
    ///
    /// Note that limit signs and gain signs should match.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let tau = 1e-3;
    /// let ki = 1e-4;
    /// let i: Biquad<f32> = Pid::default()
    ///     .period(tau)
    ///     .gain(Action::Ki, ki)
    ///     .build()
    ///     .unwrap()
    ///     .into();
    /// let x0 = 5.0;
    /// let y0 = i.update(&mut [0.0; 4], x0);
    /// assert!((y0 / (x0 * tau * ki) - 1.0).abs() < 2.0 * f32::EPSILON);
    /// ```
    ///
    /// # Arguments
    /// * `action`: Action to control
    /// * `gain`: Gain value
    pub fn gain(&mut self, action: Action, gain: T) -> &mut Self {
        self.gains[action as usize] = gain;
        self
    }

    /// Gain limit for a given action
    ///
    /// Gain limit units are `output/input`. See also [`Pid::gain()`].
    /// Multiple gains and limits may interact and lead to peaking.
    ///
    /// Note that limit signs and gain signs should match and that the
    /// default limits are positive infinity.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let ki_limit = 1e3;
    /// let i: Biquad<f32> = Pid::default()
    ///     .gain(Action::Ki, 8.0)
    ///     .limit(Action::Ki, ki_limit)
    ///     .build()
    ///     .unwrap()
    ///     .into();
    /// let mut xy = [0.0; 4];
    /// let x0 = 5.0;
    /// for _ in 0..1000 {
    ///     i.update(&mut xy, x0);
    /// }
    /// let y0 = i.update(&mut xy, x0);
    /// assert!((y0 / (x0 * ki_limit) - 1.0f32).abs() < 1e-3);
    /// ```
    ///
    /// # Arguments
    /// * `action`: Action to limit in gain
    /// * `limit`: Gain limit
    pub fn limit(&mut self, action: Action, limit: T) -> &mut Self {
        self.limits[action as usize] = limit;
        self
    }

    /// Perform checks, compute coefficients and return `Biquad`.
    ///
    /// No attempt is made to detect NaNs, non-finite gains, non-positive period,
    /// zero gain limits, or gain/limit sign mismatches.
    /// These will consequently result in NaNs/infinities, peaking, or notches in
    /// the Biquad coefficients.
    ///
    /// Gain limits for zero gain actions or for proportional action are ignored.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let i: Biquad<f32> = Pid::default().gain(Action::Kp, 3.0).build().unwrap().into();
    /// assert_eq!(i, Biquad::proportional(3.0));
    /// ```
    ///
    /// # Panic
    /// Will panic in debug mode on fixed point coefficient overflow.
    pub fn build<C: Coefficient + AsPrimitive<T>>(&self) -> Result<[C; 5], PidError>
    where
        T: AsPrimitive<C>,
    {
        const KP: usize = Action::Kp as usize;

        // Determine highest denominator (feedback, `a`) order
        let low = self
            .gains
            .iter()
            .take(KP)
            .position(|g| !g.is_zero())
            .unwrap_or(KP);

        if self.gains.iter().skip(low + 3).any(|g| !g.is_zero()) {
            return Err(PidError::OrderRange);
        }

        // Scale gains, compute limits
        let mut zi = self.period.powi(KP as i32 - low as i32);
        let p = self.period.recip();
        let mut gl = [[T::zero(); 2]; 3];
        for (gli, (i, (ggi, lli))) in gl.iter_mut().zip(
            self.gains
                .iter()
                .zip(self.limits.iter())
                .enumerate()
                .skip(low),
        ) {
            gli[0] = *ggi * zi;
            gli[1] = if i == KP { T::one() } else { gli[0] / *lli };
            zi = zi * p;
        }
        let a0i = T::one() / (gl[0][1] + gl[1][1] + gl[2][1]);

        // Derivative/integration kernels
        let kernels = [
            [C::one(), C::zero(), C::zero()],
            [C::one(), C::zero() - C::one(), C::zero()],
            [C::one(), C::zero() - C::one() - C::one(), C::one()],
        ];

        // Coefficients
        let mut ba = [[C::ZERO; 2]; 3];
        for (gli, ki) in gl.iter().zip(kernels.iter()) {
            // Quantize the gains and not the coefficients
            let (g, l) = (C::quantize(gli[0] * a0i), C::quantize(gli[1] * a0i));
            for (j, baj) in ba.iter_mut().enumerate() {
                *baj = [baj[0] + ki[j] * g, baj[1] + ki[j] * l];
            }
        }

        Ok([ba[0][0], ba[1][0], ba[2][0], ba[1][1], ba[2][1]])
    }
}

#[cfg(test)]
mod test {
    use crate::iir::*;

    #[test]
    fn pid() {
        let b: Biquad<f32> = Pid::default()
            .period(1.0)
            .gain(Action::Ki, 1e-3)
            .gain(Action::Kp, 1.0)
            .gain(Action::Kd, 1e2)
            .limit(Action::Ki, 1e3)
            .limit(Action::Kd, 1e1)
            .build()
            .unwrap()
            .into();
        let want = [
            9.18190826,
            -18.27272561,
            9.09090826,
            -1.90909074,
            0.90909083,
        ];
        for (ba_have, ba_want) in b.ba().iter().zip(want.iter()) {
            assert!(
                (ba_have / ba_want - 1.0).abs() < 2.0 * f32::EPSILON,
                "have {:?} != want {want:?}",
                b.ba(),
            );
        }
    }

    #[test]
    fn pid_i32() {
        let b: Biquad<i32> = Pid::default()
            .period(1.0)
            .gain(Action::Ki, 1e-5)
            .gain(Action::Kp, 1e-2)
            .gain(Action::Kd, 1e0)
            .limit(Action::Ki, 1e1)
            .limit(Action::Kd, 1e-1)
            .build()
            .unwrap()
            .into();
        println!("{b:?}");
    }

    #[test]
    fn units() {
        let ki = 5e-2;
        let tau = 3e-3;
        let b: Biquad<f32> = Pid::default()
            .period(tau)
            .gain(Action::Ki, ki)
            .build()
            .unwrap()
            .into();
        let mut xy = [0.0; 4];
        for i in 1..10 {
            let y_have = b.update(&mut xy, 1.0);
            let y_want = (i as f32) * tau * ki;
            assert!(
                (y_have / y_want - 1.0).abs() < 3.0 * f32::EPSILON,
                "{i}: have {y_have} != {y_want}"
            );
        }
    }
}