1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use num_traits::{AsPrimitive, Float};
use serde::{Deserialize, Serialize};

use crate::Coefficient;

/// Biquad IIR filter
///
/// A biquadratic IIR filter supports up to two zeros and two poles in the transfer function.
/// It can be used to implement a wide range of responses to input signals.
///
/// The Biquad performs the following operation to compute a new output sample `y0` from a new
/// input sample `x0` given its configuration and previous samples:
///
/// `y0 = clamp(b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2 + u, min, max)`
///
/// This implementation here saves storage and improves caching opportunities by decoupling
/// filter configuration (coefficients, limits and offset) from filter state
/// and thus supports both (a) sharing a single filter between multiple states ("channels") and (b)
/// rapid switching of filters (tuning, transfer) for a given state without copying either
/// state of configuration.
///
/// # Filter architecture
///
/// Direct Form 1 (DF1) and Direct Form 2 transposed (DF2T) are the only IIR filter
/// structures with an (effective bin the case of TDF2) single summing junction
/// this allows clamping of the output before feedback.
///
/// DF1 allows atomic coefficient change because only inputs and outputs are pipelined.
/// The summing junctuion pipelining of TDF2 would require incremental
/// coefficient changes and is thus less amenable to online tuning.
///
/// DF2T needs less state storage (2 instead of 4). This is in addition to the coefficient
/// storage (5 plus 2 limits plus 1 offset)
///
/// DF2T is less efficient and accurate for fixed-point architectures as quantization
/// happens at each intermediate summing junction in addition to the output quantization. This is
/// especially true for common `i64 + i32 * i32 -> i64` MACC architectures.
/// One could use wide state storage for fixed point DF2T but that would negate the storage
/// and processing advantages.
///
/// # Coefficients
///
/// `ba: [T; 5] = [b0, b1, b2, a1, a2]` is the coefficients type.
/// To represent the IIR coefficients, this contains the feed-forward
/// coefficients `b0, b1, b2` followed by the feed-back coefficients
/// `a1, a2`, all five normalized such that `a0 = 1`.
///
/// The summing junction of the filter also receives an offset `u`.
///
/// The filter applies clamping such that `min <= y <= max`.
///
/// See [`crate::iir::Filter`] and [`crate::iir::Pid`] for ways to generate coefficients.
///
/// # Fixed point
///
/// Coefficient scaling (see [`Coefficient`]) is fixed and optimized such that -2 is exactly
/// representable. This is tailored to low-passes, PID, II etc, where the integration rule is
/// [1, -2, 1].
///
/// There are two guard bits in the accumulator before clamping/limiting.
/// While this isn't enough to cover the worst case accumulator, it does catch many real world
/// overflow cases.
///
/// # State
///
/// To represent the IIR state (input and output memory) during [`Biquad::update()`]
/// the DF1 state contains the two previous inputs and output `[x1, x2, y1, y2]`
/// concatenated. Lower indices correspond to more recent samples.
///
/// In the DF2T case the state contains `[b1*x1 + b2*x2 - a1*y1 - a2*y2, b2*x1 - a2*y1]`
///
/// In the DF1 case with first order noise shaping, the state contains `[x1, x2, y1, y2, e1]`
/// where `e0` is the accumulated quantization error.
///
/// # PID controller
///
/// The IIR coefficients can be mapped to other transfer function
/// representations, for example PID controllers as described in
/// <https://hackmd.io/IACbwcOTSt6Adj3_F9bKuw> and
/// <https://arxiv.org/abs/1508.06319>.
///
/// Using a Biquad as a template for a PID controller achieves several important properties:
///
/// * Its transfer function is universal in the sense that any biquadratic
///   transfer function can be implemented (high-passes, gain limits, second
///   order integrators with inherent anti-windup, notches etc) without code
///   changes preserving all features.
/// * It inherits a universal implementation of "integrator anti-windup", also
///   and especially in the presence of set-point changes and in the presence
///   of proportional or derivative gain without any back-off that would reduce
///   steady-state output range.
/// * It has universal derivative-kick (undesired, unlimited, and un-physical
///   amplification of set-point changes by the derivative term) avoidance.
/// * An offset at the input of an IIR filter (a.k.a. "set-point") is
///   equivalent to an offset at the summing junction (in output units).
///   They are related by the overall (DC feed-forward) gain of the filter.
/// * It stores only previous outputs and inputs. These have direct and
///   invariant interpretation (independent of coefficients and offset).
///   Therefore it can trivially implement bump-less transfer between any
///   coefficients/offset sets.
/// * Cascading multiple IIR filters allows stable and robust
///   implementation of transfer functions beyond bequadratic terms.
#[derive(Copy, Clone, Debug, Deserialize, Serialize, PartialEq, PartialOrd)]
pub struct Biquad<T> {
    ba: [T; 5],
    u: T,
    min: T,
    max: T,
}

impl<T: Coefficient> Default for Biquad<T> {
    fn default() -> Self {
        Self {
            ba: [T::ZERO; 5],
            u: T::ZERO,
            min: T::MIN,
            max: T::MAX,
        }
    }
}

impl<T: Coefficient> From<[T; 5]> for Biquad<T> {
    fn from(ba: [T; 5]) -> Self {
        Self {
            ba,
            ..Default::default()
        }
    }
}

impl<T, C> From<&[C; 6]> for Biquad<T>
where
    T: Coefficient + AsPrimitive<C>,
    C: Float + AsPrimitive<T>,
{
    fn from(ba: &[C; 6]) -> Self {
        let ia0 = C::one() / ba[3];
        Self::from([
            T::quantize(ba[0] * ia0),
            T::quantize(ba[1] * ia0),
            T::quantize(ba[2] * ia0),
            // b[3]: a0*ia0
            T::quantize(ba[4] * ia0),
            T::quantize(ba[5] * ia0),
        ])
    }
}

impl<T, C> From<&Biquad<T>> for [C; 6]
where
    T: Coefficient + AsPrimitive<C>,
    C: 'static + Copy,
{
    fn from(value: &Biquad<T>) -> Self {
        let ba = value.ba();
        [
            ba[0].as_(),
            ba[1].as_(),
            ba[2].as_(),
            T::ONE.as_(),
            ba[3].as_(),
            ba[4].as_(),
        ]
    }
}

impl<T: Coefficient> Biquad<T> {
    /// A "hold" filter that ingests input and maintains output
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut xy = [0.0, 1.0, 2.0, 3.0];
    /// let x0 = 7.0;
    /// let y0 = Biquad::HOLD.update(&mut xy, x0);
    /// assert_eq!(y0, 2.0);
    /// assert_eq!(xy, [x0, 0.0, y0, y0]);
    /// ```
    pub const HOLD: Self = Self {
        ba: [T::ZERO, T::ZERO, T::ZERO, T::NEG_ONE, T::ZERO],
        u: T::ZERO,
        min: T::MIN,
        max: T::MAX,
    };

    /// A unity gain filter
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let x0 = 3.0;
    /// let y0 = Biquad::IDENTITY.update(&mut [0.0; 4], x0);
    /// assert_eq!(y0, x0);
    /// ```
    pub const IDENTITY: Self = Self::proportional(T::ONE);

    /// A filter with the given proportional gain at all frequencies
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let x0 = 2.0;
    /// let k = 5.0;
    /// let y0 = Biquad::proportional(k).update(&mut [0.0; 4], x0);
    /// assert_eq!(y0, x0 * k);
    /// ```
    pub const fn proportional(k: T) -> Self {
        Self {
            ba: [k, T::ZERO, T::ZERO, T::ZERO, T::ZERO],
            u: T::ZERO,
            min: T::MIN,
            max: T::MAX,
        }
    }

    /// Filter coefficients
    ///
    /// IIR filter tap gains (`ba`) are an array `[b0, b1, b2, a1, a2]` such that
    /// [`Biquad::update()`] returns
    /// `y0 = clamp(b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2 + u, min, max)`.
    ///
    /// ```
    /// # use idsp::Coefficient;
    /// # use idsp::iir::*;
    /// assert_eq!(Biquad::<i32>::IDENTITY.ba()[0], <i32 as Coefficient>::ONE);
    /// assert_eq!(Biquad::<i32>::HOLD.ba()[3], -<i32 as Coefficient>::ONE);
    /// ```
    pub fn ba(&self) -> &[T; 5] {
        &self.ba
    }

    /// Mutable reference to the filter coefficients.
    ///
    /// See [`Biquad::ba()`].
    ///
    /// ```
    /// # use idsp::Coefficient;
    /// # use idsp::iir::*;
    /// let mut i = Biquad::default();
    /// i.ba_mut()[0] = <i32 as Coefficient>::ONE;
    /// assert_eq!(i, Biquad::IDENTITY);
    /// ```
    pub fn ba_mut(&mut self) -> &mut [T; 5] {
        &mut self.ba
    }

    /// Summing junction offset
    ///
    /// This offset is applied to the output `y0` summing junction
    /// on top of the feed-forward (`b`) and feed-back (`a`) terms.
    /// The feedback samples are taken at the summing junction and
    /// thus also include (and feed back) this offset.
    pub fn u(&self) -> T {
        self.u
    }

    /// Set the summing junction offset
    ///
    /// See [`Biquad::u()`].
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut i = Biquad::default();
    /// i.set_u(5);
    /// assert_eq!(i.update(&mut [0; 4], 0), 5);
    /// ```
    pub fn set_u(&mut self, u: T) {
        self.u = u;
    }

    /// Lower output limit
    ///
    /// Guaranteed minimum output value.
    /// The value is inclusive.
    /// The clamping also cleanly affects the feedback terms.
    ///
    /// For fixed point types, during the comparison,
    /// the lowest two bits of value and limit are truncated.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// assert_eq!(Biquad::<i32>::default().min(), i32::MIN);
    /// ```
    pub fn min(&self) -> T {
        self.min
    }

    /// Set the lower output limit
    ///
    /// See [`Biquad::min()`].
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut i = Biquad::default();
    /// i.set_min(4);
    /// assert_eq!(i.update(&mut [0; 4], 0), 4);
    /// ```
    pub fn set_min(&mut self, min: T) {
        self.min = min;
    }

    /// Upper output limit
    ///
    /// Guaranteed maximum output value.
    /// The value is inclusive.
    /// The clamping also cleanly affects the feedback terms.
    ///
    /// For fixed point types, during the comparison,
    /// the lowest two bits of value and limit are truncated.
    /// The behavior is as if those two bits were 0 in the case
    /// of `min` and one in the case of `max`.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// assert_eq!(Biquad::<i32>::default().max(), i32::MAX);
    /// ```
    pub fn max(&self) -> T {
        self.max
    }

    /// Set the upper output limit
    ///
    /// See [`Biquad::max()`].
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut i = Biquad::default();
    /// i.set_max(-5);
    /// assert_eq!(i.update(&mut [0; 4], 0), -5);
    /// ```
    pub fn set_max(&mut self, max: T) {
        self.max = max;
    }

    /// Compute the overall (DC/proportional feed-forward) gain.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// assert_eq!(Biquad::proportional(3.0).forward_gain(), 3.0);
    /// ```
    ///
    /// # Returns
    /// The sum of the `b` feed-forward coefficients.
    pub fn forward_gain(&self) -> T {
        self.ba[0] + self.ba[1] + self.ba[2]
    }

    /// Compute input-referred (`x`) offset.
    ///
    /// ```
    /// # use idsp::Coefficient;
    /// # use idsp::iir::*;
    /// let mut i = Biquad::proportional(3);
    /// i.set_u(3);
    /// assert_eq!(i.input_offset(), <i32 as Coefficient>::ONE);
    /// ```
    pub fn input_offset(&self) -> T {
        self.u.div_scaled(self.forward_gain())
    }

    /// Convert input (`x`) offset to equivalent summing junction offset (`u`) and apply.
    ///
    /// In the case of a "PID" controller the response behavior of the controller
    /// to the offset is "stabilizing", and not "tracking": its frequency response
    /// is exclusively according to the lowest non-zero [`crate::iir::Action`] gain.
    /// There is no high order ("faster") response as would be the case for a "tracking"
    /// controller.
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut i = Biquad::proportional(3.0);
    /// i.set_input_offset(2.0);
    /// let x0 = 0.5;
    /// let y0 = i.update(&mut [0.0; 4], x0);
    /// assert_eq!(y0, (x0 + i.input_offset()) * i.forward_gain());
    /// ```
    ///
    /// ```
    /// # use idsp::Coefficient;
    /// # use idsp::iir::*;
    /// let mut i = Biquad::proportional(-<i32 as Coefficient>::ONE);
    /// i.set_input_offset(1);
    /// assert_eq!(i.u(), -1);
    /// ```
    ///
    /// # Arguments
    /// * `offset`: Input (`x`) offset.
    pub fn set_input_offset(&mut self, offset: T) {
        self.u = offset.mul_scaled(self.forward_gain());
    }

    /// Direct Form 1 Update
    ///
    /// Ingest a new input value into the filter, update the filter state, and
    /// return the new output. Only the state `xy` is modified.
    ///
    /// ## `N=4` Direct Form 1
    ///
    /// `xy` contains:
    /// * On entry: `[x1, x2, y1, y2]`
    /// * On exit:  `[x0, x1, y0, y1]`
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut xy = [0.0, 1.0, 2.0, 3.0];
    /// let x0 = 4.0;
    /// let y0 = Biquad::IDENTITY.update(&mut xy, x0);
    /// assert_eq!(y0, x0);
    /// assert_eq!(xy, [x0, 0.0, y0, 2.0]);
    /// ```
    ///
    /// ## `N=5` Direct Form 1 with first order noise shaping
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut xy = [1, 2, 3, 4, 5];
    /// let x0 = 6;
    /// let y0 = Biquad::IDENTITY.update(&mut xy, x0);
    /// assert_eq!(y0, x0);
    /// assert_eq!(xy, [x0, 1, y0, 3, 5]);
    /// ```
    ///
    /// `xy` contains:
    /// * On entry: `[x1, x2, y1, y2, e1]`
    /// * On exit:  `[x0, x1, y0, y1, e0]`
    ///
    /// Note: This is only useful for fixed point filters.
    ///
    /// ## `N=2` Direct Form 2 transposed
    ///
    /// Note: This is only useful for floating point filters.
    /// Don't use this for fixed point: Quantization happens at each state store operation.
    /// Ideally the state would be `[T::ACCU; 2]` but then for fixed point it would use equal amount
    /// of storage compared to DF1 for no gain in performance and loss in functionality.
    /// There are also no guard bits here.
    ///
    /// `xy` contains:
    /// * On entry: `[b1*x1 + b2*x2 - a1*y1 - a2*y2, b2*x1 - a2*y1]`
    /// * On exit:  `[b1*x0 + b2*x1 - a1*y0 - a2*y1, b2*x0 - a2*y0]`
    ///
    /// ```
    /// # use idsp::iir::*;
    /// let mut xy = [0.0, 1.0];
    /// let x0 = 3.0;
    /// let y0 = Biquad::IDENTITY.update(&mut xy, x0);
    /// assert_eq!(y0, x0);
    /// assert_eq!(xy, [1.0, 0.0]);
    /// ```
    ///
    /// # Arguments
    /// * `xy` - Current filter state.
    /// * `x0` - New input.
    ///
    /// # Returns
    /// The new output `y0 = clamp(b0*x0 + b1*x1 + b2*x2 - a1*y1 - a2*y2 + u, min, max)`
    pub fn update<const N: usize>(&self, xy: &mut [T; N], x0: T) -> T {
        match N {
            // DF1
            4 => {
                let s = self.ba[0].as_() * x0.as_()
                    + self.ba[1].as_() * xy[0].as_()
                    + self.ba[2].as_() * xy[1].as_()
                    - self.ba[3].as_() * xy[2].as_()
                    - self.ba[4].as_() * xy[3].as_();
                let (y0, _) = self.u.macc(s, self.min, self.max, T::ZERO);
                xy[1] = xy[0];
                xy[0] = x0;
                xy[3] = xy[2];
                xy[2] = y0;
                y0
            }
            // DF1 with noise shaping for fixed point
            5 => {
                let s = self.ba[0].as_() * x0.as_()
                    + self.ba[1].as_() * xy[0].as_()
                    + self.ba[2].as_() * xy[1].as_()
                    - self.ba[3].as_() * xy[2].as_()
                    - self.ba[4].as_() * xy[3].as_();
                let (y0, e0) = self.u.macc(s, self.min, self.max, xy[4]);
                xy[4] = e0;
                xy[1] = xy[0];
                xy[0] = x0;
                xy[3] = xy[2];
                xy[2] = y0;
                y0
            }
            // DF2T for floating point
            2 => {
                let y0 = (xy[0] + self.ba[0].mul_scaled(x0)).clip(self.min, self.max);
                xy[0] = xy[1] + self.ba[1].mul_scaled(x0) - self.ba[3].mul_scaled(y0);
                xy[1] = self.u + self.ba[2].mul_scaled(x0) - self.ba[4].mul_scaled(y0);
                y0
            }
            _ => unimplemented!(),
        }
    }
}