idsp/
hbf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
//! Half-band filters and cascades
//!
//! Used to perform very efficient high-dynamic range rate changes by powers of two.

use core::{
    iter::Sum,
    ops::{Add, Mul},
};

use num_traits::Zero;

/// Filter input items into output items.
pub trait Filter {
    /// Input/output item type.
    // TODO: impl with generic item type
    type Item;

    /// Process a block of items.
    ///
    /// Input items can be either in `x` or in `y`.
    /// In the latter case the filtering operation is done in-place.
    /// Output is always written into `y`.
    /// The slice of items written into `y` is returned.
    /// Input and output size relations must match the filter requirements
    /// (decimation/interpolation and maximum block size).
    /// When using in-place operation, `y` needs to contain the input items
    /// (fewer than `y.len()` in the case of interpolation) and must be able to
    /// contain the output items.
    fn process_block<'a>(
        &mut self,
        x: Option<&[Self::Item]>,
        y: &'a mut [Self::Item],
    ) -> &'a mut [Self::Item];

    /// Return the block size granularity and the maximum block size.
    ///
    /// For in-place processing, this refers to constraints on `y`.
    /// Otherwise this refers to the larger of `x` and `y` (`x` for decimation and `y` for interpolation).
    /// The granularity is also the rate change in the case of interpolation/decimation filters.
    fn block_size(&self) -> (usize, usize);

    /// Finite impulse response length in numer of output items minus one
    /// Get this many to drain all previous memory
    fn response_length(&self) -> usize;

    // TODO: process items with automatic blocks
    // fn process(&mut self, x: Option<&[Self::Item]>, y: &mut [Self::Item]) -> usize {}
}

/// Symmetric FIR filter prototype.
///
/// # Generics
/// * `M`: number of taps, one-sided. The filter has effectively 2*M DSP taps
/// * `N`: state size: N = 2*M - 1 + {input/output}.len()
///
/// # Half band decimation/interpolation filters
///
/// Half-band filters (rate change of 2) and cascades of HBFs are implemented in
/// [`HbfDec`] and [`HbfInt`] etc.
/// The half-band filter has unique properties that make it preferable in many cases:
///
/// * only needs M multiplications (fused multiply accumulate) for 4*M taps
/// * HBF decimator stores less state than a generic FIR filter
/// * as a FIR filter has linear phase/flat group delay
/// * very small passband ripple and excellent stopband attenuation
/// * as a cascade of decimation/interpolation filters, the higher-rate filters
///   need successively fewer taps, allowing the filtering to be dominated by
///   only the highest rate filter with the fewest taps
/// * In a cascade of HBF the overall latency, group delay, and impulse response
///   length are dominated by the lowest-rate filter which, due to its manageable transition
///   band width (compared to single-stage filters) can be smaller, shorter, and faster.
/// * high dynamic range and inherent stability compared with an IIR filter
/// * can be combined with a CIC filter for non-power-of-two or even higher rate changes
///
/// The implementations here are all `no_std` and `no-alloc`.
/// They support (but don't require) in-place filtering to reduce memory usage.
/// They unroll and optimize extremely well targetting current architectures,
/// e.g. requiring less than 4 instructions per input item for the full `HbfDecCascade` on Skylake.
/// The filters are optimized for decent block sizes and perform best (i.e. with negligible
/// overhead) for blocks of 32 high-rate items or more, depending very much on architecture.

#[derive(Clone, Debug, Copy)]
pub struct SymFir<'a, T, const M: usize, const N: usize> {
    x: [T; N],
    taps: &'a [T; M],
}

impl<'a, T: Copy + Zero + Add + Mul<Output = T> + Sum, const M: usize, const N: usize>
    SymFir<'a, T, M, N>
{
    /// Create a new `SymFir`.
    ///
    /// # Args
    /// * `taps`: one-sided FIR coefficients, excluding center tap, oldest to one-before-center
    pub fn new(taps: &'a [T; M]) -> Self {
        debug_assert!(N >= M * 2);
        Self {
            x: [T::zero(); N],
            taps,
        }
    }

    /// Obtain a mutable reference to the input items buffer space.
    #[inline]
    pub fn buf_mut(&mut self) -> &mut [T] {
        &mut self.x[2 * M - 1..]
    }

    /// Perform the FIR convolution and yield results iteratively.
    #[inline]
    pub fn get(&self) -> impl Iterator<Item = T> + '_ {
        self.x.windows(2 * M).map(|x| {
            let (old, new) = x.split_at(M);
            old.iter()
                .zip(new.iter().rev())
                .zip(self.taps.iter())
                .map(|((xo, xn), tap)| (*xo + *xn) * *tap)
                .sum()
        })
    }

    /// Move items as new filter state.
    ///
    /// # Args
    /// * `offset`: Keep the `2*M-1` items at `offset` as the new filter state.
    #[inline]
    pub fn keep_state(&mut self, offset: usize) {
        self.x.copy_within(offset..offset + 2 * M - 1, 0);
    }
}

// TODO: pub struct SymFirInt<R>, SymFirDec<R>

/// Half band decimator (decimate by two)
///
/// The effective number of DSP taps is 4*M - 1.
///
/// M: number of taps
/// N: state size: N = 2*M - 1 + output.len()
#[derive(Clone, Debug, Copy)]
pub struct HbfDec<'a, T, const M: usize, const N: usize> {
    even: [T; N], // This is an upper bound to N - M (unstable const expr)
    odd: SymFir<'a, T, M, N>,
}

impl<'a, T: Zero + Copy + Add + Mul<Output = T> + Sum, const M: usize, const N: usize>
    HbfDec<'a, T, M, N>
{
    /// Create a new `HbfDec`.
    ///
    /// # Args
    /// * `taps`: The FIR filter coefficients. Only the non-zero (odd) taps
    ///   from oldest to one-before-center. Normalized such that center tap is 1.
    pub fn new(taps: &'a [T; M]) -> Self {
        Self {
            even: [T::zero(); N],
            odd: SymFir::new(taps),
        }
    }
}

trait Half {
    fn half(self) -> Self;
}

macro_rules! impl_half_f {
    ($($t:ty)+) => {$(
        impl Half for $t {
            fn half(self) -> Self {
                0.5 * self
            }
        }
    )+}
}
impl_half_f!(f32 f64);

macro_rules! impl_half_i {
    ($($t:ty)+) => {$(
        impl Half for $t {
            fn half(self) -> Self {
                self >> 1
            }
        }
    )+}
}
impl_half_i!(i8 i16 i32 i64 i128);

impl<T: Copy + Zero + Add + Mul<Output = T> + Sum + Half, const M: usize, const N: usize> Filter
    for HbfDec<'_, T, M, N>
{
    type Item = T;

    #[inline]
    fn block_size(&self) -> (usize, usize) {
        (2, 2 * (N - (2 * M - 1)))
    }

    #[inline]
    fn response_length(&self) -> usize {
        2 * M - 1
    }

    fn process_block<'b>(
        &mut self,
        x: Option<&[Self::Item]>,
        y: &'b mut [Self::Item],
    ) -> &'b mut [Self::Item] {
        let x = x.unwrap_or(y);
        debug_assert_eq!(x.len() & 1, 0);
        let k = x.len() / 2;
        // load input
        for (xi, (even, odd)) in x.chunks_exact(2).zip(
            self.even[M - 1..][..k]
                .iter_mut()
                .zip(self.odd.buf_mut()[..k].iter_mut()),
        ) {
            *even = xi[0];
            *odd = xi[1];
        }
        // compute output
        for (yi, (even, odd)) in y[..k]
            .iter_mut()
            .zip(self.even[..k].iter().zip(self.odd.get()))
        {
            *yi = (*even + odd).half();
        }
        // keep state
        self.even.copy_within(k..k + M - 1, 0);
        self.odd.keep_state(k);
        &mut y[..k]
    }
}

/// Half band interpolator (interpolation rate 2)
///
/// The effective number of DSP taps is 4*M - 1.
///
/// M: number of taps
/// N: state size: N = 2*M - 1 + input.len()
#[derive(Clone, Debug, Copy)]
pub struct HbfInt<'a, T, const M: usize, const N: usize> {
    fir: SymFir<'a, T, M, N>,
}

impl<'a, T: Copy + Zero + Add + Mul<Output = T> + Sum, const M: usize, const N: usize>
    HbfInt<'a, T, M, N>
{
    /// Non-zero (odd) taps from oldest to one-before-center.
    /// Normalized such that center tap is 1.
    pub fn new(taps: &'a [T; M]) -> Self {
        Self {
            fir: SymFir::new(taps),
        }
    }

    /// Obtain a mutable reference to the input items buffer space
    pub fn buf_mut(&mut self) -> &mut [T] {
        self.fir.buf_mut()
    }
}

impl<T: Copy + Zero + Add + Mul<Output = T> + Sum, const M: usize, const N: usize> Filter
    for HbfInt<'_, T, M, N>
{
    type Item = T;

    #[inline]
    fn block_size(&self) -> (usize, usize) {
        (2, 2 * (N - (2 * M - 1)))
    }

    #[inline]
    fn response_length(&self) -> usize {
        4 * M - 2
    }

    fn process_block<'b>(
        &mut self,
        x: Option<&[Self::Item]>,
        y: &'b mut [Self::Item],
    ) -> &'b mut [Self::Item] {
        debug_assert_eq!(y.len() & 1, 0);
        let k = y.len() / 2;
        let x = x.unwrap_or(&y[..k]);
        // load input
        self.fir.buf_mut()[..k].copy_from_slice(x);
        // compute output
        for (yi, (even, &odd)) in y
            .chunks_exact_mut(2)
            .zip(self.fir.get().zip(self.fir.x[M..][..k].iter()))
        {
            // Choose the even item to be the interpolated one.
            // The alternative would have the same response length
            // but larger latency.
            yi[0] = even; // interpolated
            yi[1] = odd; // center tap: identity
        }
        // keep state
        self.fir.keep_state(k);
        y
    }
}

/// Standard/optimal half-band filter cascade taps
///
/// * obtained with `2*signal.remez(4*n - 1, bands=(0, .5-df/2, .5+df/2, 1), desired=(1, 0), fs=2, grid_density=512)[:2*n:2]`
/// * more than 98 dB stop band attenuation (>16 bit)
/// * 0.4 pass band (relative to lowest sample rate)
/// * less than 0.001 dB ripple
/// * linear phase/flat group delay
/// * rate change up to 2**5 = 32
/// * lowest rate filter is at 0 index
/// * use taps 0..n for 2**n interpolation/decimation
#[allow(clippy::excessive_precision, clippy::type_complexity)]
pub const HBF_TAPS_98: ([f32; 15], [f32; 6], [f32; 3], [f32; 3], [f32; 2]) = (
    // n=15 coefficients (effective number of DSP taps 4*15-1 = 59), transition band width df=.2 fs
    [
        7.02144012e-05,
        -2.43279582e-04,
        6.35026936e-04,
        -1.39782541e-03,
        2.74613582e-03,
        -4.96403839e-03,
        8.41806912e-03,
        -1.35827601e-02,
        2.11004053e-02,
        -3.19267647e-02,
        4.77024289e-02,
        -7.18014345e-02,
        1.12942004e-01,
        -2.03279594e-01,
        6.33592923e-01,
    ],
    // 6, .47
    [
        -0.00086943,
        0.00577837,
        -0.02201674,
        0.06357869,
        -0.16627679,
        0.61979312,
    ],
    // 3, .754
    [0.01414651, -0.10439639, 0.59026742],
    // 3, .877
    [0.01227974, -0.09930782, 0.58702834],
    // 2, .94
    [-0.06291796, 0.5629161],
);

/// * 140 dB stopband, 2 µdB passband ripple, limited by f32 dynamic range
/// * otherwise like [`HBF_TAPS_98`].
#[allow(clippy::excessive_precision, clippy::type_complexity)]
pub const HBF_TAPS: ([f32; 23], [f32; 9], [f32; 5], [f32; 4], [f32; 3]) = (
    [
        7.60376281e-07,
        -3.77494189e-06,
        1.26458572e-05,
        -3.43188258e-05,
        8.10687488e-05,
        -1.72971471e-04,
        3.40845058e-04,
        -6.29522838e-04,
        1.10128836e-03,
        -1.83933298e-03,
        2.95124925e-03,
        -4.57290979e-03,
        6.87374175e-03,
        -1.00656254e-02,
        1.44199841e-02,
        -2.03025099e-02,
        2.82462332e-02,
        -3.91128510e-02,
        5.44795655e-02,
        -7.77002648e-02,
        1.17523454e-01,
        -2.06185386e-01,
        6.34588718e-01,
    ],
    [
        3.13788260e-05,
        -2.90598691e-04,
        1.46009063e-03,
        -5.22455620e-03,
        1.48913004e-02,
        -3.62276956e-02,
        8.02305192e-02,
        -1.80019379e-01,
        6.25149012e-01,
    ],
    [
        7.62032287e-04,
        -7.64759816e-03,
        3.85545008e-02,
        -1.39896080e-01,
        6.08227193e-01,
    ],
    [
        -2.65761488e-03,
        2.49805823e-02,
        -1.21497065e-01,
        5.99174082e-01,
    ],
    [1.18773514e-02, -9.81294960e-02, 5.86252153e-01],
);

/// Passband width in units of lowest sample rate
pub const HBF_PASSBAND: f32 = 0.4;

/// Max low-rate block size (HbfIntCascade input, HbfDecCascade output)
pub const HBF_CASCADE_BLOCK: usize = 1 << 6;

/// Half-band decimation filter cascade with optimal taps
///
/// See [HBF_TAPS].
/// Only in-place processing is implemented.
/// Supports rate changes of 1, 2, 4, 8, and 16.
#[derive(Copy, Clone, Debug)]
pub struct HbfDecCascade {
    depth: usize,
    stages: (
        HbfDec<
            'static,
            f32,
            { HBF_TAPS.0.len() },
            { 2 * HBF_TAPS.0.len() - 1 + HBF_CASCADE_BLOCK },
        >,
        HbfDec<
            'static,
            f32,
            { HBF_TAPS.1.len() },
            { 2 * HBF_TAPS.1.len() - 1 + HBF_CASCADE_BLOCK * 2 },
        >,
        HbfDec<
            'static,
            f32,
            { HBF_TAPS.2.len() },
            { 2 * HBF_TAPS.2.len() - 1 + HBF_CASCADE_BLOCK * 4 },
        >,
        HbfDec<
            'static,
            f32,
            { HBF_TAPS.3.len() },
            { 2 * HBF_TAPS.3.len() - 1 + HBF_CASCADE_BLOCK * 8 },
        >,
    ),
}

impl Default for HbfDecCascade {
    fn default() -> Self {
        Self {
            depth: 0,
            stages: (
                HbfDec::new(&HBF_TAPS.0),
                HbfDec::new(&HBF_TAPS.1),
                HbfDec::new(&HBF_TAPS.2),
                HbfDec::new(&HBF_TAPS.3),
            ),
        }
    }
}

impl HbfDecCascade {
    /// Set cascade depth
    ///
    /// Sets the number of HBF filter stages to apply.
    #[inline]
    pub fn set_depth(&mut self, n: usize) {
        assert!(n <= 4);
        self.depth = n;
    }

    /// Cascade depth
    ///
    /// The number of HBF filter stages to apply.
    #[inline]
    pub fn depth(&self) -> usize {
        self.depth
    }
}

impl Filter for HbfDecCascade {
    type Item = f32;

    #[inline]
    fn block_size(&self) -> (usize, usize) {
        (
            1 << self.depth,
            match self.depth {
                0 => usize::MAX,
                1 => self.stages.0.block_size().1,
                2 => self.stages.1.block_size().1,
                3 => self.stages.2.block_size().1,
                _ => self.stages.3.block_size().1,
            },
        )
    }

    #[inline]
    fn response_length(&self) -> usize {
        let mut n = 0;
        if self.depth > 3 {
            n = n / 2 + self.stages.3.response_length();
        }
        if self.depth > 2 {
            n = n / 2 + self.stages.2.response_length();
        }
        if self.depth > 1 {
            n = n / 2 + self.stages.1.response_length();
        }
        if self.depth > 0 {
            n = n / 2 + self.stages.0.response_length();
        }
        n
    }

    fn process_block<'a>(
        &mut self,
        x: Option<&[Self::Item]>,
        mut y: &'a mut [Self::Item],
    ) -> &'a mut [Self::Item] {
        if x.is_some() {
            unimplemented!(); // TODO: pair of intermediate buffers
        }
        let n = y.len();

        if self.depth > 3 {
            y = self.stages.3.process_block(None, y);
        }
        if self.depth > 2 {
            y = self.stages.2.process_block(None, y);
        }
        if self.depth > 1 {
            y = self.stages.1.process_block(None, y);
        }
        if self.depth > 0 {
            y = self.stages.0.process_block(None, y);
        }
        debug_assert_eq!(y.len(), n >> self.depth);
        y
    }
}

/// Half-band interpolation filter cascade with optimal taps.
///
/// This is a no_alloc version without trait objects.
/// The price to pay is fixed and maximal memory usage independent
/// of block size and cascade length.
///
/// See [HBF_TAPS].
/// Only in-place processing is implemented.
/// Supports rate changes of 1, 2, 4, 8, and 16.
#[derive(Copy, Clone, Debug)]
pub struct HbfIntCascade {
    depth: usize,
    stages: (
        HbfInt<
            'static,
            f32,
            { HBF_TAPS.0.len() },
            { 2 * HBF_TAPS.0.len() - 1 + HBF_CASCADE_BLOCK },
        >,
        HbfInt<
            'static,
            f32,
            { HBF_TAPS.1.len() },
            { 2 * HBF_TAPS.1.len() - 1 + HBF_CASCADE_BLOCK * 2 },
        >,
        HbfInt<
            'static,
            f32,
            { HBF_TAPS.2.len() },
            { 2 * HBF_TAPS.2.len() - 1 + HBF_CASCADE_BLOCK * 4 },
        >,
        HbfInt<
            'static,
            f32,
            { HBF_TAPS.3.len() },
            { 2 * HBF_TAPS.3.len() - 1 + HBF_CASCADE_BLOCK * 8 },
        >,
    ),
}

impl Default for HbfIntCascade {
    fn default() -> Self {
        Self {
            depth: 4,
            stages: (
                HbfInt::new(&HBF_TAPS.0),
                HbfInt::new(&HBF_TAPS.1),
                HbfInt::new(&HBF_TAPS.2),
                HbfInt::new(&HBF_TAPS.3),
            ),
        }
    }
}

impl HbfIntCascade {
    /// Set cascade depth
    ///
    /// Sets the number of HBF filter stages to apply.
    pub fn set_depth(&mut self, n: usize) {
        assert!(n <= 4);
        self.depth = n;
    }

    /// Cascade depth
    ///
    /// The number of HBF filter stages to apply.
    pub fn depth(&self) -> usize {
        self.depth
    }
}

impl Filter for HbfIntCascade {
    type Item = f32;

    #[inline]
    fn block_size(&self) -> (usize, usize) {
        (
            1 << self.depth,
            match self.depth {
                0 => usize::MAX,
                1 => self.stages.0.block_size().1,
                2 => self.stages.1.block_size().1,
                3 => self.stages.2.block_size().1,
                _ => self.stages.3.block_size().1,
            },
        )
    }

    #[inline]
    fn response_length(&self) -> usize {
        let mut n = 0;
        if self.depth > 0 {
            n = 2 * n + self.stages.0.response_length();
        }
        if self.depth > 1 {
            n = 2 * n + self.stages.1.response_length();
        }
        if self.depth > 2 {
            n = 2 * n + self.stages.2.response_length();
        }
        if self.depth > 3 {
            n = 2 * n + self.stages.3.response_length();
        }
        n
    }

    fn process_block<'a>(
        &mut self,
        x: Option<&[Self::Item]>,
        y: &'a mut [Self::Item],
    ) -> &'a mut [Self::Item] {
        if x.is_some() {
            unimplemented!(); // TODO: one intermediate buffer and `y`
        }
        // TODO: use buf_mut() and write directly into next filters' input buffer

        let mut n = y.len() >> self.depth;
        if self.depth > 0 {
            n = self.stages.0.process_block(None, &mut y[..2 * n]).len();
        }
        if self.depth > 1 {
            n = self.stages.1.process_block(None, &mut y[..2 * n]).len();
        }
        if self.depth > 2 {
            n = self.stages.2.process_block(None, &mut y[..2 * n]).len();
        }
        if self.depth > 3 {
            n = self.stages.3.process_block(None, &mut y[..2 * n]).len();
        }
        debug_assert_eq!(n, y.len());
        &mut y[..n]
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use rustfft::{num_complex::Complex, FftPlanner};

    #[test]
    fn test() {
        let mut h = HbfDec::<_, 1, 5>::new(&[0.5]);
        assert_eq!(h.process_block(None, &mut []), &[]);

        let mut x = [1.0; 8];
        assert_eq!((2, x.len()), h.block_size());
        let x = h.process_block(None, &mut x);
        assert_eq!(x, [0.75, 1.0, 1.0, 1.0]);

        let mut h = HbfDec::<_, { HBF_TAPS.3.len() }, 11>::new(&HBF_TAPS.3);
        let mut x: Vec<_> = (0..8).map(|i| i as f32).collect();
        assert_eq!((2, x.len()), h.block_size());
        let x = h.process_block(None, &mut x);
        println!("{:?}", x);
    }

    #[test]
    fn decim() {
        let mut h = HbfDecCascade::default();
        h.set_depth(4);
        assert_eq!(
            h.block_size(),
            (1 << h.depth(), HBF_CASCADE_BLOCK << h.depth())
        );
        let mut x: Vec<_> = (0..2 << h.depth()).map(|i| i as f32).collect();
        let x = h.process_block(None, &mut x);
        println!("{:?}", x);
    }

    #[test]
    fn response_length_dec() {
        let mut h = HbfDecCascade::default();
        h.set_depth(4);
        let mut y: Vec<f32> = (0..1 << 10).map(|_| rand::random()).collect();
        h.process_block(None, &mut y);
        let mut y = vec![0.0; 1 << 10];
        let z = h.process_block(None, &mut y);
        let n = h.response_length();
        assert!(z[n - 1] != 0.0);
        assert_eq!(z[n], 0.0);
    }

    #[test]
    fn interp() {
        let mut h = HbfIntCascade::default();
        h.set_depth(4);
        assert_eq!(
            h.block_size(),
            (1 << h.depth(), HBF_CASCADE_BLOCK << h.depth())
        );
        let k = h.block_size().0;
        let r = h.response_length();
        let mut x = vec![0.0; (r + 1 + k - 1) / k * k];
        x[0] = 1.0;
        let x = h.process_block(None, &mut x);
        println!("{:?}", x); // interpolator impulse response
        assert!(x[r] != 0.0);
        assert_eq!(x[r + 1..], vec![0.0; x.len() - r - 1]);

        let g = (1 << h.depth()) as f32;
        let mut y = Vec::from_iter(x.iter().map(|&x| Complex {
            re: x as f64 / g as f64,
            im: 0.0,
        }));
        // pad
        y.resize(5 << 10, Complex::default());
        FftPlanner::new().plan_fft_forward(y.len()).process(&mut y);
        // transfer function
        let p = Vec::from_iter(y.iter().map(|y| 10.0 * y.norm_sqr().log10()));
        let f = p.len() as f32 / g;
        // pass band ripple
        let p_pass = p[..(f * HBF_PASSBAND).floor() as _]
            .iter()
            .fold(0.0, |m, p| p.abs().max(m));
        assert!(p_pass < 2e-6, "{p_pass}");
        // stop band attenuation
        let p_stop = p[(f * (1.0 - HBF_PASSBAND)).ceil() as _..p.len() / 2]
            .iter()
            .fold(-200.0, |m, p| p.max(m));
        assert!(p_stop < -140.0, "{p_stop}");
    }

    /// small 32 block size, single stage, 3 mul (11 tap) decimator
    /// 3.5 insn per input item, > 1 GS/s per core on Skylake
    #[test]
    #[ignore]
    fn insn_dec() {
        const N: usize = HBF_TAPS.4.len();
        assert_eq!(N, 3);
        let mut h = HbfDec::<_, N, { 2 * N - 1 + (1 << 4) }>::new(&HBF_TAPS.4);
        let mut x = [9.0; 1 << 5];
        for _ in 0..1 << 25 {
            h.process_block(None, &mut x);
        }
    }

    /// 1k block size, single stage, 23 mul (91 tap) decimator
    /// 4.9 insn: > 1 GS/s
    #[test]
    #[ignore]
    fn insn_dec2() {
        const N: usize = HBF_TAPS.0.len();
        assert_eq!(N, 23);
        const M: usize = 1 << 10;
        let mut h = HbfDec::<_, N, { 2 * N - 1 + M }>::new(&HBF_TAPS.0);
        let mut x = [9.0; M];
        for _ in 0..1 << 20 {
            h.process_block(None, &mut x);
        }
    }

    /// full block size full decimator cascade (depth 4, 1024 items per input block)
    /// 4.1 insn: > 1 GS/s
    #[test]
    #[ignore]
    fn insn_casc() {
        let mut x = [9.0; 1 << 10];
        let mut h = HbfDecCascade::default();
        h.set_depth(4);
        for _ in 0..1 << 20 {
            h.process_block(None, &mut x);
        }
    }

    // // sdr crate, setup like insn_dec2()
    // // 187 insn
    // #[test]
    // #[ignore]
    // fn insn_sdr() {
    //     use sdr::fir;
    //     const N: usize = HBF_TAPS.0.len();
    //     const M: usize = 1 << 10;
    //     let mut taps = [0.0f64; { 4 * N - 1 }];
    //     let (old, new) = taps.split_at_mut(2 * N - 1);
    //     for (tap, (old, new)) in HBF_TAPS.0.iter().zip(
    //         old.iter_mut()
    //             .step_by(2)
    //             .zip(new.iter_mut().rev().step_by(2)),
    //     ) {
    //         *old = (*tap * 0.5).into();
    //         *new = *old;
    //     }
    //     taps[2 * N - 1] = 0.5;
    //     let mut h = fir::FIR::new(&taps, 2, 1);
    //     let x = [9.0; M];
    //     // let mut h1 = HbfDec::<N, { 2 * N - 1 + M }>::new(&HBF_TAPS.0);
    //     // let mut y1 = [0.0; M / 2];
    //     for _ in 0..1 << 16 {
    //         let _y = h.process(&x);
    //         // h1.process_block(Some(&x), &mut y1);
    //         // assert_eq!(y1.len(), y.len());
    //         // assert!(y1.iter().zip(y.iter()).all(|(y1, y)| (y1 - y).abs() < 1e-6));
    //     }
    // }

    // // // futuredsp crate, setup like insn_dec2()
    // // // 315 insn
    // #[test]
    // #[ignore]
    // fn insn_futuredsp() {
    //     use futuredsp::{fir::PolyphaseResamplingFirKernel, UnaryKernel};
    //     const N: usize = HBF_TAPS.0.len();
    //     const M: usize = 1 << 10;
    //     let mut taps = [0.0f32; { 4 * N - 1 }];
    //     let (old, new) = taps.split_at_mut(2 * N - 1);
    //     for (tap, (old, new)) in HBF_TAPS.0.iter().zip(
    //         old.iter_mut()
    //             .step_by(2)
    //             .zip(new.iter_mut().rev().step_by(2)),
    //     ) {
    //         *old = *tap * 0.5;
    //         *new = *old;
    //     }
    //     taps[2 * N - 1] = 0.5;
    //     let x = [9.0f32; M];
    //     let mut y = [0.0f32; M];
    //     let fir = PolyphaseResamplingFirKernel::<_, _, _, _>::new(1, 2, taps);
    //     for _ in 0..1 << 14 {
    //         fir.work(&x, &mut y);
    //     }
    // }
}