idsp/hbf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
//! Half-band filters and cascades
//!
//! Used to perform very efficient high-dynamic range rate changes by powers of two.
use core::{
iter::Sum,
ops::{Add, Mul},
};
use num_traits::Zero;
/// Filter input items into output items.
pub trait Filter {
/// Input/output item type.
// TODO: impl with generic item type
type Item;
/// Process a block of items.
///
/// Input items can be either in `x` or in `y`.
/// In the latter case the filtering operation is done in-place.
/// Output is always written into `y`.
/// The slice of items written into `y` is returned.
/// Input and output size relations must match the filter requirements
/// (decimation/interpolation and maximum block size).
/// When using in-place operation, `y` needs to contain the input items
/// (fewer than `y.len()` in the case of interpolation) and must be able to
/// contain the output items.
fn process_block<'a>(
&mut self,
x: Option<&[Self::Item]>,
y: &'a mut [Self::Item],
) -> &'a mut [Self::Item];
/// Return the block size granularity and the maximum block size.
///
/// For in-place processing, this refers to constraints on `y`.
/// Otherwise this refers to the larger of `x` and `y` (`x` for decimation and `y` for interpolation).
/// The granularity is also the rate change in the case of interpolation/decimation filters.
fn block_size(&self) -> (usize, usize);
/// Finite impulse response length in numer of output items minus one
/// Get this many to drain all previous memory
fn response_length(&self) -> usize;
// TODO: process items with automatic blocks
// fn process(&mut self, x: Option<&[Self::Item]>, y: &mut [Self::Item]) -> usize {}
}
/// Symmetric FIR filter prototype.
///
/// # Generics
/// * `M`: number of taps, one-sided. The filter has effectively 2*M DSP taps
/// * `N`: state size: N = 2*M - 1 + {input/output}.len()
///
/// # Half band decimation/interpolation filters
///
/// Half-band filters (rate change of 2) and cascades of HBFs are implemented in
/// [`HbfDec`] and [`HbfInt`] etc.
/// The half-band filter has unique properties that make it preferable in many cases:
///
/// * only needs M multiplications (fused multiply accumulate) for 4*M taps
/// * HBF decimator stores less state than a generic FIR filter
/// * as a FIR filter has linear phase/flat group delay
/// * very small passband ripple and excellent stopband attenuation
/// * as a cascade of decimation/interpolation filters, the higher-rate filters
/// need successively fewer taps, allowing the filtering to be dominated by
/// only the highest rate filter with the fewest taps
/// * In a cascade of HBF the overall latency, group delay, and impulse response
/// length are dominated by the lowest-rate filter which, due to its manageable transition
/// band width (compared to single-stage filters) can be smaller, shorter, and faster.
/// * high dynamic range and inherent stability compared with an IIR filter
/// * can be combined with a CIC filter for non-power-of-two or even higher rate changes
///
/// The implementations here are all `no_std` and `no-alloc`.
/// They support (but don't require) in-place filtering to reduce memory usage.
/// They unroll and optimize extremely well targetting current architectures,
/// e.g. requiring less than 4 instructions per input item for the full `HbfDecCascade` on Skylake.
/// The filters are optimized for decent block sizes and perform best (i.e. with negligible
/// overhead) for blocks of 32 high-rate items or more, depending very much on architecture.
#[derive(Clone, Debug, Copy)]
pub struct SymFir<'a, T, const M: usize, const N: usize> {
x: [T; N],
taps: &'a [T; M],
}
impl<'a, T: Copy + Zero + Add + Mul<Output = T> + Sum, const M: usize, const N: usize>
SymFir<'a, T, M, N>
{
/// Create a new `SymFir`.
///
/// # Args
/// * `taps`: one-sided FIR coefficients, excluding center tap, oldest to one-before-center
pub fn new(taps: &'a [T; M]) -> Self {
debug_assert!(N >= M * 2);
Self {
x: [T::zero(); N],
taps,
}
}
/// Obtain a mutable reference to the input items buffer space.
#[inline]
pub fn buf_mut(&mut self) -> &mut [T] {
&mut self.x[2 * M - 1..]
}
/// Perform the FIR convolution and yield results iteratively.
#[inline]
pub fn get(&self) -> impl Iterator<Item = T> + '_ {
self.x.windows(2 * M).map(|x| {
let (old, new) = x.split_at(M);
old.iter()
.zip(new.iter().rev())
.zip(self.taps.iter())
.map(|((xo, xn), tap)| (*xo + *xn) * *tap)
.sum()
})
}
/// Move items as new filter state.
///
/// # Args
/// * `offset`: Keep the `2*M-1` items at `offset` as the new filter state.
#[inline]
pub fn keep_state(&mut self, offset: usize) {
self.x.copy_within(offset..offset + 2 * M - 1, 0);
}
}
// TODO: pub struct SymFirInt<R>, SymFirDec<R>
/// Half band decimator (decimate by two)
///
/// The effective number of DSP taps is 4*M - 1.
///
/// M: number of taps
/// N: state size: N = 2*M - 1 + output.len()
#[derive(Clone, Debug, Copy)]
pub struct HbfDec<'a, T, const M: usize, const N: usize> {
even: [T; N], // This is an upper bound to N - M (unstable const expr)
odd: SymFir<'a, T, M, N>,
}
impl<'a, T: Zero + Copy + Add + Mul<Output = T> + Sum, const M: usize, const N: usize>
HbfDec<'a, T, M, N>
{
/// Create a new `HbfDec`.
///
/// # Args
/// * `taps`: The FIR filter coefficients. Only the non-zero (odd) taps
/// from oldest to one-before-center. Normalized such that center tap is 1.
pub fn new(taps: &'a [T; M]) -> Self {
Self {
even: [T::zero(); N],
odd: SymFir::new(taps),
}
}
}
trait Half {
fn half(self) -> Self;
}
macro_rules! impl_half_f {
($($t:ty)+) => {$(
impl Half for $t {
fn half(self) -> Self {
0.5 * self
}
}
)+}
}
impl_half_f!(f32 f64);
macro_rules! impl_half_i {
($($t:ty)+) => {$(
impl Half for $t {
fn half(self) -> Self {
self >> 1
}
}
)+}
}
impl_half_i!(i8 i16 i32 i64 i128);
impl<T: Copy + Zero + Add + Mul<Output = T> + Sum + Half, const M: usize, const N: usize> Filter
for HbfDec<'_, T, M, N>
{
type Item = T;
#[inline]
fn block_size(&self) -> (usize, usize) {
(2, 2 * (N - (2 * M - 1)))
}
#[inline]
fn response_length(&self) -> usize {
2 * M - 1
}
fn process_block<'b>(
&mut self,
x: Option<&[Self::Item]>,
y: &'b mut [Self::Item],
) -> &'b mut [Self::Item] {
let x = x.unwrap_or(y);
debug_assert_eq!(x.len() & 1, 0);
let k = x.len() / 2;
// load input
for (xi, (even, odd)) in x.chunks_exact(2).zip(
self.even[M - 1..][..k]
.iter_mut()
.zip(self.odd.buf_mut()[..k].iter_mut()),
) {
*even = xi[0];
*odd = xi[1];
}
// compute output
for (yi, (even, odd)) in y[..k]
.iter_mut()
.zip(self.even[..k].iter().zip(self.odd.get()))
{
*yi = (*even + odd).half();
}
// keep state
self.even.copy_within(k..k + M - 1, 0);
self.odd.keep_state(k);
&mut y[..k]
}
}
/// Half band interpolator (interpolation rate 2)
///
/// The effective number of DSP taps is 4*M - 1.
///
/// M: number of taps
/// N: state size: N = 2*M - 1 + input.len()
#[derive(Clone, Debug, Copy)]
pub struct HbfInt<'a, T, const M: usize, const N: usize> {
fir: SymFir<'a, T, M, N>,
}
impl<'a, T: Copy + Zero + Add + Mul<Output = T> + Sum, const M: usize, const N: usize>
HbfInt<'a, T, M, N>
{
/// Non-zero (odd) taps from oldest to one-before-center.
/// Normalized such that center tap is 1.
pub fn new(taps: &'a [T; M]) -> Self {
Self {
fir: SymFir::new(taps),
}
}
/// Obtain a mutable reference to the input items buffer space
pub fn buf_mut(&mut self) -> &mut [T] {
self.fir.buf_mut()
}
}
impl<T: Copy + Zero + Add + Mul<Output = T> + Sum, const M: usize, const N: usize> Filter
for HbfInt<'_, T, M, N>
{
type Item = T;
#[inline]
fn block_size(&self) -> (usize, usize) {
(2, 2 * (N - (2 * M - 1)))
}
#[inline]
fn response_length(&self) -> usize {
4 * M - 2
}
fn process_block<'b>(
&mut self,
x: Option<&[Self::Item]>,
y: &'b mut [Self::Item],
) -> &'b mut [Self::Item] {
debug_assert_eq!(y.len() & 1, 0);
let k = y.len() / 2;
let x = x.unwrap_or(&y[..k]);
// load input
self.fir.buf_mut()[..k].copy_from_slice(x);
// compute output
for (yi, (even, &odd)) in y
.chunks_exact_mut(2)
.zip(self.fir.get().zip(self.fir.x[M..][..k].iter()))
{
// Choose the even item to be the interpolated one.
// The alternative would have the same response length
// but larger latency.
yi[0] = even; // interpolated
yi[1] = odd; // center tap: identity
}
// keep state
self.fir.keep_state(k);
y
}
}
/// Standard/optimal half-band filter cascade taps
///
/// * obtained with `2*signal.remez(4*n - 1, bands=(0, .5-df/2, .5+df/2, 1), desired=(1, 0), fs=2, grid_density=512)[:2*n:2]`
/// * more than 98 dB stop band attenuation (>16 bit)
/// * 0.4 pass band (relative to lowest sample rate)
/// * less than 0.001 dB ripple
/// * linear phase/flat group delay
/// * rate change up to 2**5 = 32
/// * lowest rate filter is at 0 index
/// * use taps 0..n for 2**n interpolation/decimation
#[allow(clippy::excessive_precision, clippy::type_complexity)]
pub const HBF_TAPS_98: ([f32; 15], [f32; 6], [f32; 3], [f32; 3], [f32; 2]) = (
// n=15 coefficients (effective number of DSP taps 4*15-1 = 59), transition band width df=.2 fs
[
7.02144012e-05,
-2.43279582e-04,
6.35026936e-04,
-1.39782541e-03,
2.74613582e-03,
-4.96403839e-03,
8.41806912e-03,
-1.35827601e-02,
2.11004053e-02,
-3.19267647e-02,
4.77024289e-02,
-7.18014345e-02,
1.12942004e-01,
-2.03279594e-01,
6.33592923e-01,
],
// 6, .47
[
-0.00086943,
0.00577837,
-0.02201674,
0.06357869,
-0.16627679,
0.61979312,
],
// 3, .754
[0.01414651, -0.10439639, 0.59026742],
// 3, .877
[0.01227974, -0.09930782, 0.58702834],
// 2, .94
[-0.06291796, 0.5629161],
);
/// * 140 dB stopband, 2 µdB passband ripple, limited by f32 dynamic range
/// * otherwise like [`HBF_TAPS_98`].
#[allow(clippy::excessive_precision, clippy::type_complexity)]
pub const HBF_TAPS: ([f32; 23], [f32; 9], [f32; 5], [f32; 4], [f32; 3]) = (
[
7.60376281e-07,
-3.77494189e-06,
1.26458572e-05,
-3.43188258e-05,
8.10687488e-05,
-1.72971471e-04,
3.40845058e-04,
-6.29522838e-04,
1.10128836e-03,
-1.83933298e-03,
2.95124925e-03,
-4.57290979e-03,
6.87374175e-03,
-1.00656254e-02,
1.44199841e-02,
-2.03025099e-02,
2.82462332e-02,
-3.91128510e-02,
5.44795655e-02,
-7.77002648e-02,
1.17523454e-01,
-2.06185386e-01,
6.34588718e-01,
],
[
3.13788260e-05,
-2.90598691e-04,
1.46009063e-03,
-5.22455620e-03,
1.48913004e-02,
-3.62276956e-02,
8.02305192e-02,
-1.80019379e-01,
6.25149012e-01,
],
[
7.62032287e-04,
-7.64759816e-03,
3.85545008e-02,
-1.39896080e-01,
6.08227193e-01,
],
[
-2.65761488e-03,
2.49805823e-02,
-1.21497065e-01,
5.99174082e-01,
],
[1.18773514e-02, -9.81294960e-02, 5.86252153e-01],
);
/// Passband width in units of lowest sample rate
pub const HBF_PASSBAND: f32 = 0.4;
/// Max low-rate block size (HbfIntCascade input, HbfDecCascade output)
pub const HBF_CASCADE_BLOCK: usize = 1 << 6;
/// Half-band decimation filter cascade with optimal taps
///
/// See [HBF_TAPS].
/// Only in-place processing is implemented.
/// Supports rate changes of 1, 2, 4, 8, and 16.
#[derive(Copy, Clone, Debug)]
pub struct HbfDecCascade {
depth: usize,
stages: (
HbfDec<
'static,
f32,
{ HBF_TAPS.0.len() },
{ 2 * HBF_TAPS.0.len() - 1 + HBF_CASCADE_BLOCK },
>,
HbfDec<
'static,
f32,
{ HBF_TAPS.1.len() },
{ 2 * HBF_TAPS.1.len() - 1 + HBF_CASCADE_BLOCK * 2 },
>,
HbfDec<
'static,
f32,
{ HBF_TAPS.2.len() },
{ 2 * HBF_TAPS.2.len() - 1 + HBF_CASCADE_BLOCK * 4 },
>,
HbfDec<
'static,
f32,
{ HBF_TAPS.3.len() },
{ 2 * HBF_TAPS.3.len() - 1 + HBF_CASCADE_BLOCK * 8 },
>,
),
}
impl Default for HbfDecCascade {
fn default() -> Self {
Self {
depth: 0,
stages: (
HbfDec::new(&HBF_TAPS.0),
HbfDec::new(&HBF_TAPS.1),
HbfDec::new(&HBF_TAPS.2),
HbfDec::new(&HBF_TAPS.3),
),
}
}
}
impl HbfDecCascade {
/// Set cascade depth
///
/// Sets the number of HBF filter stages to apply.
#[inline]
pub fn set_depth(&mut self, n: usize) {
assert!(n <= 4);
self.depth = n;
}
/// Cascade depth
///
/// The number of HBF filter stages to apply.
#[inline]
pub fn depth(&self) -> usize {
self.depth
}
}
impl Filter for HbfDecCascade {
type Item = f32;
#[inline]
fn block_size(&self) -> (usize, usize) {
(
1 << self.depth,
match self.depth {
0 => usize::MAX,
1 => self.stages.0.block_size().1,
2 => self.stages.1.block_size().1,
3 => self.stages.2.block_size().1,
_ => self.stages.3.block_size().1,
},
)
}
#[inline]
fn response_length(&self) -> usize {
let mut n = 0;
if self.depth > 3 {
n = n / 2 + self.stages.3.response_length();
}
if self.depth > 2 {
n = n / 2 + self.stages.2.response_length();
}
if self.depth > 1 {
n = n / 2 + self.stages.1.response_length();
}
if self.depth > 0 {
n = n / 2 + self.stages.0.response_length();
}
n
}
fn process_block<'a>(
&mut self,
x: Option<&[Self::Item]>,
mut y: &'a mut [Self::Item],
) -> &'a mut [Self::Item] {
if x.is_some() {
unimplemented!(); // TODO: pair of intermediate buffers
}
let n = y.len();
if self.depth > 3 {
y = self.stages.3.process_block(None, y);
}
if self.depth > 2 {
y = self.stages.2.process_block(None, y);
}
if self.depth > 1 {
y = self.stages.1.process_block(None, y);
}
if self.depth > 0 {
y = self.stages.0.process_block(None, y);
}
debug_assert_eq!(y.len(), n >> self.depth);
y
}
}
/// Half-band interpolation filter cascade with optimal taps.
///
/// This is a no_alloc version without trait objects.
/// The price to pay is fixed and maximal memory usage independent
/// of block size and cascade length.
///
/// See [HBF_TAPS].
/// Only in-place processing is implemented.
/// Supports rate changes of 1, 2, 4, 8, and 16.
#[derive(Copy, Clone, Debug)]
pub struct HbfIntCascade {
depth: usize,
stages: (
HbfInt<
'static,
f32,
{ HBF_TAPS.0.len() },
{ 2 * HBF_TAPS.0.len() - 1 + HBF_CASCADE_BLOCK },
>,
HbfInt<
'static,
f32,
{ HBF_TAPS.1.len() },
{ 2 * HBF_TAPS.1.len() - 1 + HBF_CASCADE_BLOCK * 2 },
>,
HbfInt<
'static,
f32,
{ HBF_TAPS.2.len() },
{ 2 * HBF_TAPS.2.len() - 1 + HBF_CASCADE_BLOCK * 4 },
>,
HbfInt<
'static,
f32,
{ HBF_TAPS.3.len() },
{ 2 * HBF_TAPS.3.len() - 1 + HBF_CASCADE_BLOCK * 8 },
>,
),
}
impl Default for HbfIntCascade {
fn default() -> Self {
Self {
depth: 4,
stages: (
HbfInt::new(&HBF_TAPS.0),
HbfInt::new(&HBF_TAPS.1),
HbfInt::new(&HBF_TAPS.2),
HbfInt::new(&HBF_TAPS.3),
),
}
}
}
impl HbfIntCascade {
/// Set cascade depth
///
/// Sets the number of HBF filter stages to apply.
pub fn set_depth(&mut self, n: usize) {
assert!(n <= 4);
self.depth = n;
}
/// Cascade depth
///
/// The number of HBF filter stages to apply.
pub fn depth(&self) -> usize {
self.depth
}
}
impl Filter for HbfIntCascade {
type Item = f32;
#[inline]
fn block_size(&self) -> (usize, usize) {
(
1 << self.depth,
match self.depth {
0 => usize::MAX,
1 => self.stages.0.block_size().1,
2 => self.stages.1.block_size().1,
3 => self.stages.2.block_size().1,
_ => self.stages.3.block_size().1,
},
)
}
#[inline]
fn response_length(&self) -> usize {
let mut n = 0;
if self.depth > 0 {
n = 2 * n + self.stages.0.response_length();
}
if self.depth > 1 {
n = 2 * n + self.stages.1.response_length();
}
if self.depth > 2 {
n = 2 * n + self.stages.2.response_length();
}
if self.depth > 3 {
n = 2 * n + self.stages.3.response_length();
}
n
}
fn process_block<'a>(
&mut self,
x: Option<&[Self::Item]>,
y: &'a mut [Self::Item],
) -> &'a mut [Self::Item] {
if x.is_some() {
unimplemented!(); // TODO: one intermediate buffer and `y`
}
// TODO: use buf_mut() and write directly into next filters' input buffer
let mut n = y.len() >> self.depth;
if self.depth > 0 {
n = self.stages.0.process_block(None, &mut y[..2 * n]).len();
}
if self.depth > 1 {
n = self.stages.1.process_block(None, &mut y[..2 * n]).len();
}
if self.depth > 2 {
n = self.stages.2.process_block(None, &mut y[..2 * n]).len();
}
if self.depth > 3 {
n = self.stages.3.process_block(None, &mut y[..2 * n]).len();
}
debug_assert_eq!(n, y.len());
&mut y[..n]
}
}
#[cfg(test)]
mod test {
use super::*;
use rustfft::{num_complex::Complex, FftPlanner};
#[test]
fn test() {
let mut h = HbfDec::<_, 1, 5>::new(&[0.5]);
assert_eq!(h.process_block(None, &mut []), &[]);
let mut x = [1.0; 8];
assert_eq!((2, x.len()), h.block_size());
let x = h.process_block(None, &mut x);
assert_eq!(x, [0.75, 1.0, 1.0, 1.0]);
let mut h = HbfDec::<_, { HBF_TAPS.3.len() }, 11>::new(&HBF_TAPS.3);
let mut x: Vec<_> = (0..8).map(|i| i as f32).collect();
assert_eq!((2, x.len()), h.block_size());
let x = h.process_block(None, &mut x);
println!("{:?}", x);
}
#[test]
fn decim() {
let mut h = HbfDecCascade::default();
h.set_depth(4);
assert_eq!(
h.block_size(),
(1 << h.depth(), HBF_CASCADE_BLOCK << h.depth())
);
let mut x: Vec<_> = (0..2 << h.depth()).map(|i| i as f32).collect();
let x = h.process_block(None, &mut x);
println!("{:?}", x);
}
#[test]
fn response_length_dec() {
let mut h = HbfDecCascade::default();
h.set_depth(4);
let mut y: Vec<f32> = (0..1 << 10).map(|_| rand::random()).collect();
h.process_block(None, &mut y);
let mut y = vec![0.0; 1 << 10];
let z = h.process_block(None, &mut y);
let n = h.response_length();
assert!(z[n - 1] != 0.0);
assert_eq!(z[n], 0.0);
}
#[test]
fn interp() {
let mut h = HbfIntCascade::default();
h.set_depth(4);
assert_eq!(
h.block_size(),
(1 << h.depth(), HBF_CASCADE_BLOCK << h.depth())
);
let k = h.block_size().0;
let r = h.response_length();
let mut x = vec![0.0; (r + 1 + k - 1) / k * k];
x[0] = 1.0;
let x = h.process_block(None, &mut x);
println!("{:?}", x); // interpolator impulse response
assert!(x[r] != 0.0);
assert_eq!(x[r + 1..], vec![0.0; x.len() - r - 1]);
let g = (1 << h.depth()) as f32;
let mut y = Vec::from_iter(x.iter().map(|&x| Complex {
re: x as f64 / g as f64,
im: 0.0,
}));
// pad
y.resize(5 << 10, Complex::default());
FftPlanner::new().plan_fft_forward(y.len()).process(&mut y);
// transfer function
let p = Vec::from_iter(y.iter().map(|y| 10.0 * y.norm_sqr().log10()));
let f = p.len() as f32 / g;
// pass band ripple
let p_pass = p[..(f * HBF_PASSBAND).floor() as _]
.iter()
.fold(0.0, |m, p| p.abs().max(m));
assert!(p_pass < 2e-6, "{p_pass}");
// stop band attenuation
let p_stop = p[(f * (1.0 - HBF_PASSBAND)).ceil() as _..p.len() / 2]
.iter()
.fold(-200.0, |m, p| p.max(m));
assert!(p_stop < -140.0, "{p_stop}");
}
/// small 32 block size, single stage, 3 mul (11 tap) decimator
/// 3.5 insn per input item, > 1 GS/s per core on Skylake
#[test]
#[ignore]
fn insn_dec() {
const N: usize = HBF_TAPS.4.len();
assert_eq!(N, 3);
let mut h = HbfDec::<_, N, { 2 * N - 1 + (1 << 4) }>::new(&HBF_TAPS.4);
let mut x = [9.0; 1 << 5];
for _ in 0..1 << 25 {
h.process_block(None, &mut x);
}
}
/// 1k block size, single stage, 23 mul (91 tap) decimator
/// 4.9 insn: > 1 GS/s
#[test]
#[ignore]
fn insn_dec2() {
const N: usize = HBF_TAPS.0.len();
assert_eq!(N, 23);
const M: usize = 1 << 10;
let mut h = HbfDec::<_, N, { 2 * N - 1 + M }>::new(&HBF_TAPS.0);
let mut x = [9.0; M];
for _ in 0..1 << 20 {
h.process_block(None, &mut x);
}
}
/// full block size full decimator cascade (depth 4, 1024 items per input block)
/// 4.1 insn: > 1 GS/s
#[test]
#[ignore]
fn insn_casc() {
let mut x = [9.0; 1 << 10];
let mut h = HbfDecCascade::default();
h.set_depth(4);
for _ in 0..1 << 20 {
h.process_block(None, &mut x);
}
}
// // sdr crate, setup like insn_dec2()
// // 187 insn
// #[test]
// #[ignore]
// fn insn_sdr() {
// use sdr::fir;
// const N: usize = HBF_TAPS.0.len();
// const M: usize = 1 << 10;
// let mut taps = [0.0f64; { 4 * N - 1 }];
// let (old, new) = taps.split_at_mut(2 * N - 1);
// for (tap, (old, new)) in HBF_TAPS.0.iter().zip(
// old.iter_mut()
// .step_by(2)
// .zip(new.iter_mut().rev().step_by(2)),
// ) {
// *old = (*tap * 0.5).into();
// *new = *old;
// }
// taps[2 * N - 1] = 0.5;
// let mut h = fir::FIR::new(&taps, 2, 1);
// let x = [9.0; M];
// // let mut h1 = HbfDec::<N, { 2 * N - 1 + M }>::new(&HBF_TAPS.0);
// // let mut y1 = [0.0; M / 2];
// for _ in 0..1 << 16 {
// let _y = h.process(&x);
// // h1.process_block(Some(&x), &mut y1);
// // assert_eq!(y1.len(), y.len());
// // assert!(y1.iter().zip(y.iter()).all(|(y1, y)| (y1 - y).abs() < 1e-6));
// }
// }
// // // futuredsp crate, setup like insn_dec2()
// // // 315 insn
// #[test]
// #[ignore]
// fn insn_futuredsp() {
// use futuredsp::{fir::PolyphaseResamplingFirKernel, UnaryKernel};
// const N: usize = HBF_TAPS.0.len();
// const M: usize = 1 << 10;
// let mut taps = [0.0f32; { 4 * N - 1 }];
// let (old, new) = taps.split_at_mut(2 * N - 1);
// for (tap, (old, new)) in HBF_TAPS.0.iter().zip(
// old.iter_mut()
// .step_by(2)
// .zip(new.iter_mut().rev().step_by(2)),
// ) {
// *old = *tap * 0.5;
// *new = *old;
// }
// taps[2 * N - 1] = 0.5;
// let x = [9.0f32; M];
// let mut y = [0.0f32; M];
// let fir = PolyphaseResamplingFirKernel::<_, _, _, _>::new(1, 2, taps);
// for _ in 0..1 << 14 {
// fir.work(&x, &mut y);
// }
// }
}