idsp/dsm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/// Delta-sigma modulator
///
/// * MASH-(1)^K architecture
/// * `0 <= K <= 8` (`K=0` is valid but the output will be the constant quantized 0)
/// * The output range is `1 - (1 << K - 1)..=(1 << K - 1)`.
/// * Given constant input `x0`, the average output is `x0/(1 << 32)`.
/// * The noise goes up as `K * 20 dB/decade`.
///
/// ```
/// # use idsp::Dsm;
/// let mut d = Dsm::<3>::default();
/// let x = 0x87654321;
/// let n = 1 << 20;
/// let y = (0..n).map(|_| d.update(x) as f32).sum::<f32>() / n as f32;
/// let m = x as f32 / (1u64 << 32) as f32;
/// assert!((y / m - 1.0).abs() < (1.0 / n as f32).sqrt(), "{y} != {m}");
/// ```
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd)]
pub struct Dsm<const K: usize> {
a: [u32; K],
c: [i8; K],
}
impl<const K: usize> Default for Dsm<K> {
fn default() -> Self {
Self {
a: [0; K],
c: [0; K],
}
}
}
impl<const K: usize> Dsm<K> {
/// Ingest input sample, emit new output.
///
/// # Arguments
/// * `x`: New input sample
///
/// # Returns
/// New output
pub fn update(&mut self, x: u32) -> i8 {
let mut d = 0i8;
let mut c = false;
self.a.iter_mut().fold(x, |x, a| {
(*a, c) = a.overflowing_add(x);
d = (d << 1) | c as i8;
*a
});
self.c.iter_mut().take(K - 1).fold(d & 1, |mut y, c| {
d >>= 1;
(y, *c) = ((d & 1) + y - *c, y);
y
})
}
}