1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
pub use num_complex::Complex;
use super::{atan2, cossin};
/// Complex extension trait offering DSP (fast, good accuracy) functionality.
pub trait ComplexExt<T, U> {
/// Unit magnitude from angle
fn from_angle(angle: T) -> Self;
/// Square of magnitude
fn abs_sqr(&self) -> U;
/// Log2 approximation
fn log2(&self) -> T;
/// Angle
fn arg(&self) -> T;
/// Staturating addition
fn saturating_add(&self, other: Self) -> Self;
/// Saturating subtraction
fn saturating_sub(&self, other: Self) -> Self;
}
impl ComplexExt<i32, u32> for Complex<i32> {
/// Return a Complex on the unit circle given an angle.
///
/// Example:
///
/// ```
/// use idsp::{Complex, ComplexExt};
/// Complex::<i32>::from_angle(0);
/// Complex::<i32>::from_angle(1 << 30); // pi/2
/// Complex::<i32>::from_angle(-1 << 30); // -pi/2
/// ```
fn from_angle(angle: i32) -> Self {
let (c, s) = cossin(angle);
Self::new(c, s)
}
/// Return the absolute square (the squared magnitude).
///
/// Note: Normalization is `1 << 32`, i.e. U0.32.
///
/// Note(panic): This will panic for `Complex(i32::MIN, i32::MIN)`
///
/// Example:
///
/// ```
/// use idsp::{Complex, ComplexExt};
/// assert_eq!(Complex::new(i32::MIN, 0).abs_sqr(), 1 << 31);
/// assert_eq!(Complex::new(i32::MAX, i32::MAX).abs_sqr(), u32::MAX - 3);
/// ```
fn abs_sqr(&self) -> u32 {
(((self.re as i64) * (self.re as i64) + (self.im as i64) * (self.im as i64)) >> 31) as u32
}
/// log2(power) re full scale approximation
///
/// TODO: scale up, interpolate
///
/// Panic:
/// This will panic for `Complex(i32::MIN, i32::MIN)`
///
/// Example:
///
/// ```
/// use idsp::{Complex, ComplexExt};
/// assert_eq!(Complex::new(i32::MAX, i32::MAX).log2(), -1);
/// assert_eq!(Complex::new(i32::MAX, 0).log2(), -2);
/// assert_eq!(Complex::new(1, 0).log2(), -63);
/// assert_eq!(Complex::new(0, 0).log2(), -64);
/// ```
fn log2(&self) -> i32 {
let a = (self.re as i64) * (self.re as i64) + (self.im as i64) * (self.im as i64);
-(a.leading_zeros() as i32)
}
/// Return the angle.
///
/// Note: Normalization is `1 << 31 == pi`.
///
/// Example:
///
/// ```
/// use idsp::{Complex, ComplexExt};
/// assert_eq!(Complex::new(0, 0).arg(), 0);
/// ```
fn arg(&self) -> i32 {
atan2(self.im, self.re)
}
fn saturating_add(&self, other: Self) -> Self {
Self::new(
self.re.saturating_add(other.re),
self.im.saturating_add(other.im),
)
}
fn saturating_sub(&self, other: Self) -> Self {
Self::new(
self.re.saturating_sub(other.re),
self.im.saturating_sub(other.im),
)
}
}
/// Full scale fixed point multiplication.
pub trait MulScaled<T> {
/// Scaled multiplication for fixed point
fn mul_scaled(self, other: T) -> Self;
}
impl MulScaled<Complex<i32>> for Complex<i32> {
fn mul_scaled(self, other: Self) -> Self {
let a = self.re as i64;
let b = self.im as i64;
let c = other.re as i64;
let d = other.im as i64;
Complex {
re: ((a * c - b * d) >> 31) as i32,
im: ((b * c + a * d) >> 31) as i32,
}
}
}
impl MulScaled<i32> for Complex<i32> {
fn mul_scaled(self, other: i32) -> Self {
Complex {
re: ((other as i64 * self.re as i64) >> 31) as i32,
im: ((other as i64 * self.im as i64) >> 31) as i32,
}
}
}
impl MulScaled<i16> for Complex<i32> {
fn mul_scaled(self, other: i16) -> Self {
Complex {
re: (other as i32 * (self.re >> 16) + (1 << 14)) >> 15,
im: (other as i32 * (self.im >> 16) + (1 << 14)) >> 15,
}
}
}