idsp/
complex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
pub use num_complex::Complex;

use super::{atan2, cossin};

/// Complex extension trait offering DSP (fast, good accuracy) functionality.
pub trait ComplexExt<T, U> {
    /// Unit magnitude from angle
    fn from_angle(angle: T) -> Self;
    /// Square of magnitude
    fn abs_sqr(&self) -> U;
    /// Log2 approximation
    fn log2(&self) -> T;
    /// Angle
    fn arg(&self) -> T;
    /// Staturating addition
    fn saturating_add(&self, other: Self) -> Self;
    /// Saturating subtraction
    fn saturating_sub(&self, other: Self) -> Self;
}

impl ComplexExt<i32, u32> for Complex<i32> {
    /// Return a Complex on the unit circle given an angle.
    ///
    /// Example:
    ///
    /// ```
    /// use idsp::{Complex, ComplexExt};
    /// Complex::<i32>::from_angle(0);
    /// Complex::<i32>::from_angle(1 << 30); // pi/2
    /// Complex::<i32>::from_angle(-1 << 30); // -pi/2
    /// ```
    fn from_angle(angle: i32) -> Self {
        let (c, s) = cossin(angle);
        Self::new(c, s)
    }

    /// Return the absolute square (the squared magnitude).
    ///
    /// Note: Normalization is `1 << 32`, i.e. U0.32.
    ///
    /// Note(panic): This will panic for `Complex(i32::MIN, i32::MIN)`
    ///
    /// Example:
    ///
    /// ```
    /// use idsp::{Complex, ComplexExt};
    /// assert_eq!(Complex::new(i32::MIN, 0).abs_sqr(), 1 << 31);
    /// assert_eq!(Complex::new(i32::MAX, i32::MAX).abs_sqr(), u32::MAX - 3);
    /// ```
    fn abs_sqr(&self) -> u32 {
        (((self.re as i64) * (self.re as i64) + (self.im as i64) * (self.im as i64)) >> 31) as u32
    }

    /// log2(power) re full scale approximation
    ///
    /// TODO: scale up, interpolate
    ///
    /// Panic:
    /// This will panic for `Complex(i32::MIN, i32::MIN)`
    ///
    /// Example:
    ///
    /// ```
    /// use idsp::{Complex, ComplexExt};
    /// assert_eq!(Complex::new(i32::MAX, i32::MAX).log2(), -1);
    /// assert_eq!(Complex::new(i32::MAX, 0).log2(), -2);
    /// assert_eq!(Complex::new(1, 0).log2(), -63);
    /// assert_eq!(Complex::new(0, 0).log2(), -64);
    /// ```
    fn log2(&self) -> i32 {
        let a = (self.re as i64) * (self.re as i64) + (self.im as i64) * (self.im as i64);
        -(a.leading_zeros() as i32)
    }

    /// Return the angle.
    ///
    /// Note: Normalization is `1 << 31 == pi`.
    ///
    /// Example:
    ///
    /// ```
    /// use idsp::{Complex, ComplexExt};
    /// assert_eq!(Complex::new(0, 0).arg(), 0);
    /// ```
    fn arg(&self) -> i32 {
        atan2(self.im, self.re)
    }

    fn saturating_add(&self, other: Self) -> Self {
        Self::new(
            self.re.saturating_add(other.re),
            self.im.saturating_add(other.im),
        )
    }

    fn saturating_sub(&self, other: Self) -> Self {
        Self::new(
            self.re.saturating_sub(other.re),
            self.im.saturating_sub(other.im),
        )
    }
}

/// Full scale fixed point multiplication.
pub trait MulScaled<T> {
    /// Scaled multiplication for fixed point
    fn mul_scaled(self, other: T) -> Self;
}

impl MulScaled<Complex<i32>> for Complex<i32> {
    fn mul_scaled(self, other: Self) -> Self {
        let a = self.re as i64;
        let b = self.im as i64;
        let c = other.re as i64;
        let d = other.im as i64;
        Complex {
            re: ((a * c - b * d) >> 31) as i32,
            im: ((b * c + a * d) >> 31) as i32,
        }
    }
}

impl MulScaled<i32> for Complex<i32> {
    fn mul_scaled(self, other: i32) -> Self {
        Complex {
            re: ((other as i64 * self.re as i64) >> 31) as i32,
            im: ((other as i64 * self.im as i64) >> 31) as i32,
        }
    }
}

impl MulScaled<i16> for Complex<i32> {
    fn mul_scaled(self, other: i16) -> Self {
        Complex {
            re: (other as i32 * (self.re >> 16) + (1 << 14)) >> 15,
            im: (other as i32 * (self.im >> 16) + (1 << 14)) >> 15,
        }
    }
}