idsp/cic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
use core::ops::AddAssign;
use num_traits::{AsPrimitive, Num, Pow, WrappingAdd, WrappingSub};
/// Cascaded integrator comb structure
///
/// Order `N` where `N = 3` is cubic.
#[derive(Clone, Debug)]
pub struct Cic<T, const N: usize> {
/// Rate change (fast/slow - 1)
/// Interpolator: output/input - 1
/// Decimator: input/output - 1
rate: u32,
/// Up/downsampler state (count down)
index: u32,
/// Zero order hold behind comb sections.
/// Interpolator: Combined with the upsampler
/// Decimator: To support `get_decimate()`
zoh: T,
/// Comb/differentiator state
combs: [T; N],
/// Integrator state
integrators: [T; N],
}
impl<T, const N: usize> Cic<T, N>
where
T: Num + AddAssign + WrappingAdd + WrappingSub + Pow<usize, Output = T> + Copy + 'static,
u32: AsPrimitive<T>,
{
/// Create a new zero-initialized filter with the given rate change.
pub fn new(rate: u32) -> Self {
Self {
rate,
index: 0,
zoh: T::zero(),
combs: [T::zero(); N],
integrators: [T::zero(); N],
}
}
/// Filter order
///
/// * 0: zero order hold
/// * 1: linear
/// * 2: quadratic
/// * 3: cubic interpolation/decimation
///
/// etc.
pub const fn order(&self) -> usize {
N
}
/// Rate change
///
/// `fast/slow - 1`
pub const fn rate(&self) -> u32 {
self.rate
}
/// Set the rate change
///
/// `fast/slow - 1`
pub fn set_rate(&mut self, rate: u32) {
self.rate = rate;
}
/// Zero-initialize the filter state
pub fn clear(&mut self) {
*self = Self::new(self.rate);
}
/// Accepts/provides new slow-rate sample
///
/// Interpolator: accepts new input sample
/// Decimator: returns new output sample
pub const fn tick(&self) -> bool {
self.index == 0
}
/// Current interpolator output
pub fn get_interpolate(&self) -> T {
self.integrators.last().copied().unwrap_or(self.zoh)
}
/// Current decimator output
pub fn get_decimate(&self) -> T {
self.zoh
}
/// Filter gain
pub fn gain(&self) -> T {
(self.rate.as_() + T::one()).pow(N)
}
/// Right shift amount
///
/// `log2(gain())` if gain is a power of two,
/// otherwise an upper bound.
pub const fn gain_log2(&self) -> u32 {
(u32::BITS - self.rate.leading_zeros()) * N as u32
}
/// Impulse response length
pub const fn response_length(&self) -> usize {
self.rate as usize * N
}
/// Establish a settled filter state
pub fn settle_interpolate(&mut self, x: T) {
self.clear();
if let Some(c) = self.combs.first_mut() {
*c = x;
} else {
self.zoh = x;
}
let g = self.gain();
if let Some(i) = self.integrators.last_mut() {
*i = x * g;
}
}
/// Establish a settled filter state
///
/// Unimplemented!
pub fn settle_decimate(&mut self, x: T) {
self.clear();
self.zoh = x * self.gain();
unimplemented!();
}
/// Optionally ingest a new low-rate sample and
/// retrieve the next output.
///
/// A new sample must be supplied at the correct time (when [`Cic::tick()`] is true)
pub fn interpolate(&mut self, x: Option<T>) -> T {
if let Some(x) = x {
debug_assert_eq!(self.index, 0);
self.index = self.rate;
let x = self.combs.iter_mut().fold(x, |x, c| {
let y = x - *c;
*c = x;
y
});
self.zoh = x;
} else {
self.index -= 1;
}
self.integrators.iter_mut().fold(self.zoh, |x, i| {
// Overflow is not OK
*i += x;
*i
})
}
/// Ingest a new high-rate sample and optionally retrieve next output.
pub fn decimate(&mut self, x: T) -> Option<T> {
let x = self.integrators.iter_mut().fold(x, |x, i| {
// Overflow is OK if bitwidth is sufficient (input * gain)
*i = i.wrapping_add(&x);
*i
});
if let Some(index) = self.index.checked_sub(1) {
self.index = index;
None
} else {
self.index = self.rate;
let x = self.combs.iter_mut().fold(x, |x, c| {
let y = x.wrapping_sub(c);
*c = x;
y
});
self.zoh = x;
Some(self.zoh)
}
}
}
#[cfg(test)]
mod test {
use core::cmp::Ordering;
use super::*;
use quickcheck_macros::quickcheck;
#[quickcheck]
fn new(rate: u32) {
let _ = Cic::<i64, 3>::new(rate);
}
#[quickcheck]
fn identity_dec(x: Vec<i64>) {
let mut dec = Cic::<_, 3>::new(0);
for x in x {
assert_eq!(x, dec.decimate(x).unwrap());
assert_eq!(x, dec.get_decimate());
}
}
#[quickcheck]
fn identity_int(x: Vec<i64>) {
const N: usize = 3;
let mut int = Cic::<_, N>::new(0);
for x in x {
assert_eq!(x >> N, int.interpolate(Some(x >> N)));
assert_eq!(x >> N, int.get_interpolate());
}
}
#[quickcheck]
fn response_length_gain_settle(x: Vec<i32>, rate: u32) {
let mut int = Cic::<_, 3>::new(rate);
let shift = int.gain_log2();
if shift >= 32 {
return;
}
assert!(int.gain() <= 1 << shift);
for x in x {
while !int.tick() {
int.interpolate(None);
}
let y_last = int.get_interpolate();
let y_want = x as i64 * int.gain();
for i in 0..2 * int.response_length() {
let y = int.interpolate(if int.tick() { Some(x as i64) } else { None });
assert_eq!(y, int.get_interpolate());
if i < int.response_length() {
match y_want.cmp(&y_last) {
Ordering::Greater => assert!((y_last..y_want).contains(&y)),
Ordering::Less => assert!((y_want..y_last).contains(&(y - 1))),
Ordering::Equal => assert_eq!(y_want, y),
}
} else {
assert_eq!(y, y_want);
}
}
}
}
#[quickcheck]
fn settle(rate: u32, x: i32) {
let mut int = Cic::<i64, 3>::new(rate);
if int.gain_log2() >= 32 {
return;
}
int.settle_interpolate(x as _);
// let mut dec = Cic::<i64, 3>::new(rate);
// dec.settle_decimate(x as _);
for _ in 0..100 {
let y = int.interpolate(if int.tick() { Some(x as _) } else { None });
assert_eq!(y, x as i64 * int.gain());
assert_eq!(y, int.get_interpolate());
// assert_eq!(dec.get_decimate(), x as i64 * dec.gain());
// if let Some(y) = dec.decimate(x as _) {
// assert_eq!(y, x as i64 * dec.gain());
// }
}
}
}