dual_iir/
dual-iir.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//! # Dual IIR
//!
//! The Dual IIR application exposes two configurable channels. Stabilizer samples input at a fixed
//! rate, digitally filters the data, and then generates filtered output signals on the respective
//! channel outputs.
//!
//! ## Features
//! * Two indpenendent channels
//! * up to 800 kHz rate, timed sampling
//! * Run-time filter configuration
//! * Input/Output data streaming
//! * Down to 2 µs latency
//! * f32 IIR math
//! * Generic biquad (second order) IIR filter
//! * Anti-windup
//! * Derivative kick avoidance
//!
//! ## Settings
//! Refer to the [DualIir] structure for documentation of run-time configurable settings for this
//! application.
//!
//! ## Telemetry
//! Refer to [stabilizer::net::telemetry::Telemetry] for information about telemetry reported by this application.
//!
//! ## Stream
//! This application streams raw ADC and DAC data over UDP. Refer to
//! [stabilizer::net::data_stream] for more information.
#![no_std]
#![no_main]

use core::mem::MaybeUninit;
use core::sync::atomic::{fence, Ordering};
use miniconf::{Leaf, Tree};
use serde::{Deserialize, Serialize};

use rtic_monotonics::Monotonic;

use fugit::ExtU32;
use mutex_trait::prelude::*;

use idsp::iir;

use stabilizer::{
    hardware::{
        self,
        adc::{Adc0Input, Adc1Input, AdcCode},
        afe::Gain,
        dac::{Dac0Output, Dac1Output, DacCode},
        hal,
        signal_generator::{self, SignalGenerator},
        timers::SamplingTimer,
        DigitalInput0, DigitalInput1, SerialTerminal, SystemTimer, Systick,
        UsbDevice, AFE0, AFE1,
    },
    net::{
        data_stream::{FrameGenerator, StreamFormat, StreamTarget},
        telemetry::TelemetryBuffer,
        NetworkState, NetworkUsers,
    },
    settings::NetSettings,
};

const SCALE: f32 = i16::MAX as _;

// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;

// The number of samples in each batch process
const BATCH_SIZE: usize = 8;

// The logarithm of the number of 100MHz timer ticks between each sample. With a value of 2^7 =
// 128, there is 1.28uS per sample, corresponding to a sampling frequency of 781.25 KHz.
const SAMPLE_TICKS_LOG2: u8 = 7;
const SAMPLE_TICKS: u32 = 1 << SAMPLE_TICKS_LOG2;
const SAMPLE_PERIOD: f32 =
    SAMPLE_TICKS as f32 * hardware::design_parameters::TIMER_PERIOD;

#[derive(Clone, Debug, Tree)]
pub struct Settings {
    dual_iir: DualIir,
    net: NetSettings,
}

impl stabilizer::settings::AppSettings for Settings {
    fn new(net: NetSettings) -> Self {
        Self {
            net,
            dual_iir: DualIir::default(),
        }
    }

    fn net(&self) -> &NetSettings {
        &self.net
    }
}

impl serial_settings::Settings for Settings {
    fn reset(&mut self) {
        *self = Self {
            dual_iir: DualIir::default(),
            net: NetSettings::new(self.net.mac),
        }
    }
}

#[derive(Clone, Debug, Tree, Serialize, Deserialize)]
pub struct DualIir {
    /// Configure the Analog Front End (AFE) gain.
    ///
    /// # Path
    /// `afe/<n>`
    ///
    /// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
    ///
    /// # Value
    /// Any of the variants of [Gain] enclosed in double quotes.
    afe: [Leaf<Gain>; 2],

    /// Configure the IIR filter parameters.
    ///
    /// # Path
    /// `iir_ch/<n>/<m>`
    ///
    /// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
    /// * `<m>` specifies which cascade to configure. `<m>` := [0, 1], depending on [IIR_CASCADE_LENGTH]
    ///
    /// See [iir::Biquad]
    iir_ch: [[Leaf<iir::Biquad<f32>>; IIR_CASCADE_LENGTH]; 2],

    /// Specified true if DI1 should be used as a "hold" input.
    ///
    /// # Path
    /// `allow_hold`
    ///
    /// # Value
    /// "true" or "false"
    allow_hold: Leaf<bool>,

    /// Specified true if "hold" should be forced regardless of DI1 state and hold allowance.
    ///
    /// # Path
    /// `force_hold`
    ///
    /// # Value
    /// "true" or "false"
    force_hold: Leaf<bool>,

    /// Specifies the telemetry output period in seconds.
    ///
    /// # Path
    /// `telemetry_period`
    ///
    /// # Value
    /// Any non-zero value less than 65536.
    telemetry_period: Leaf<u16>,

    /// Specifies the target for data streaming.
    ///
    /// # Path
    /// `stream`
    ///
    /// # Value
    /// See [StreamTarget#miniconf]
    stream: Leaf<StreamTarget>,

    /// Specifies the config for signal generators to add on to DAC0/DAC1 outputs.
    ///
    /// # Path
    /// `source/<n>`
    ///
    /// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
    ///
    /// # Value
    /// See [signal_generator::BasicConfig#miniconf]
    source: [signal_generator::BasicConfig; 2],
}

impl Default for DualIir {
    fn default() -> Self {
        let mut i = iir::Biquad::IDENTITY;
        i.set_min(-SCALE);
        i.set_max(SCALE);
        Self {
            // Analog frontend programmable gain amplifier gains (G1, G2, G5, G10)
            afe: Default::default(),
            // IIR filter tap gains are an array `[b0, b1, b2, a1, a2]` such that the
            // new output is computed as `y0 = a1*y1 + a2*y2 + b0*x0 + b1*x1 + b2*x2`.
            // The array is `iir_state[channel-index][cascade-index][coeff-index]`.
            // The IIR coefficients can be mapped to other transfer function
            // representations, for example as described in https://arxiv.org/abs/1508.06319
            iir_ch: [[i.into(); IIR_CASCADE_LENGTH]; 2],

            // Permit the DI1 digital input to suppress filter output updates.
            allow_hold: false.into(),
            // Force suppress filter output updates.
            force_hold: false.into(),
            // The default telemetry period in seconds.
            telemetry_period: 10.into(),

            source: Default::default(),

            stream: Default::default(),
        }
    }
}

#[rtic::app(device = stabilizer::hardware::hal::stm32, peripherals = true, dispatchers=[DCMI, JPEG, LTDC, SDMMC])]
mod app {
    use super::*;

    #[shared]
    struct Shared {
        usb: UsbDevice,
        network: NetworkUsers<DualIir, 3>,
        settings: Settings,
        active_settings: DualIir,
        telemetry: TelemetryBuffer,
        source: [SignalGenerator; 2],
    }

    #[local]
    struct Local {
        usb_terminal: SerialTerminal<Settings, 4>,
        sampling_timer: SamplingTimer,
        digital_inputs: (DigitalInput0, DigitalInput1),
        afes: (AFE0, AFE1),
        adcs: (Adc0Input, Adc1Input),
        dacs: (Dac0Output, Dac1Output),
        iir_state: [[[f32; 4]; IIR_CASCADE_LENGTH]; 2],
        generator: FrameGenerator,
        cpu_temp_sensor: stabilizer::hardware::cpu_temp_sensor::CpuTempSensor,
    }

    #[init]
    fn init(c: init::Context) -> (Shared, Local) {
        let clock = SystemTimer::new(|| Systick::now().ticks());

        // Configure the microcontroller
        let (stabilizer, _pounder) = hardware::setup::setup::<Settings, 4>(
            c.core,
            c.device,
            clock,
            BATCH_SIZE,
            SAMPLE_TICKS,
        );

        let mut network = NetworkUsers::new(
            stabilizer.net.stack,
            stabilizer.net.phy,
            clock,
            env!("CARGO_BIN_NAME"),
            &stabilizer.settings.net,
            stabilizer.metadata,
        );

        let generator = network.configure_streaming(StreamFormat::AdcDacData);

        let shared = Shared {
            usb: stabilizer.usb,
            network,
            active_settings: stabilizer.settings.dual_iir.clone(),
            telemetry: TelemetryBuffer::default(),
            source: [
                SignalGenerator::new(
                    stabilizer.settings.dual_iir.source[0]
                        .try_into_config(SAMPLE_PERIOD, DacCode::FULL_SCALE)
                        .unwrap(),
                ),
                SignalGenerator::new(
                    stabilizer.settings.dual_iir.source[1]
                        .try_into_config(SAMPLE_PERIOD, DacCode::FULL_SCALE)
                        .unwrap(),
                ),
            ],
            settings: stabilizer.settings,
        };

        let mut local = Local {
            usb_terminal: stabilizer.usb_serial,
            sampling_timer: stabilizer.adc_dac_timer,
            digital_inputs: stabilizer.digital_inputs,
            afes: stabilizer.afes,
            adcs: stabilizer.adcs,
            dacs: stabilizer.dacs,
            iir_state: [[[0.; 4]; IIR_CASCADE_LENGTH]; 2],
            generator,
            cpu_temp_sensor: stabilizer.temperature_sensor,
        };

        // Enable ADC/DAC events
        local.adcs.0.start();
        local.adcs.1.start();
        local.dacs.0.start();
        local.dacs.1.start();

        // Spawn a settings update for default settings.
        settings_update::spawn().unwrap();
        telemetry::spawn().unwrap();
        ethernet_link::spawn().unwrap();
        usb::spawn().unwrap();
        start::spawn().unwrap();

        (shared, local)
    }

    #[task(priority = 1, local=[sampling_timer])]
    async fn start(c: start::Context) {
        Systick::delay(100.millis()).await;
        // Start sampling ADCs and DACs.
        c.local.sampling_timer.start();
    }

    /// Main DSP processing routine.
    ///
    /// # Note
    /// Processing time for the DSP application code is bounded by the following constraints:
    ///
    /// DSP application code starts after the ADC has generated a batch of samples and must be
    /// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
    /// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
    ///
    /// The DSP application code must also fill out the next DAC output buffer in time such that the
    /// DAC can switch to it when it has completed the current buffer. If this constraint is not met
    /// it's possible that old DAC codes will be generated on the output and the output samples will
    /// be delayed by 1 batch.
    ///
    /// Because the ADC and DAC operate at the same rate, these two constraints actually implement
    /// the same time bounds, meeting one also means the other is also met.
    #[task(binds=DMA1_STR4, local=[digital_inputs, adcs, dacs, iir_state, generator], shared=[active_settings, source, telemetry], priority=3)]
    #[link_section = ".itcm.process"]
    fn process(c: process::Context) {
        let process::SharedResources {
            active_settings,
            telemetry,
            source,
            ..
        } = c.shared;

        let process::LocalResources {
            digital_inputs,
            adcs: (adc0, adc1),
            dacs: (dac0, dac1),
            iir_state,
            generator,
            ..
        } = c.local;

        (active_settings, telemetry, source).lock(
            |settings, telemetry, source| {
                let digital_inputs =
                    [digital_inputs.0.is_high(), digital_inputs.1.is_high()];
                telemetry.digital_inputs = digital_inputs;

                let hold = *settings.force_hold
                    || (digital_inputs[1] && *settings.allow_hold);

                (adc0, adc1, dac0, dac1).lock(|adc0, adc1, dac0, dac1| {
                    let adc_samples = [adc0, adc1];
                    let dac_samples = [dac0, dac1];

                    // Preserve instruction and data ordering w.r.t. DMA flag access.
                    fence(Ordering::SeqCst);

                    for channel in 0..adc_samples.len() {
                        adc_samples[channel]
                            .iter()
                            .zip(dac_samples[channel].iter_mut())
                            .zip(&mut source[channel])
                            .map(|((ai, di), signal)| {
                                let x = f32::from(*ai as i16);
                                let y = settings.iir_ch[channel]
                                    .iter()
                                    .zip(iir_state[channel].iter_mut())
                                    .fold(x, |yi, (ch, state)| {
                                        let filter = if hold {
                                            &iir::Biquad::HOLD
                                        } else {
                                            ch
                                        };

                                        filter.update(state, yi)
                                    });

                                // Note(unsafe): The filter limits must ensure that the value is in range.
                                // The truncation introduces 1/2 LSB distortion.
                                let y: i16 = unsafe { y.to_int_unchecked() };

                                let y = y.saturating_add(signal);

                                // Convert to DAC code
                                *di = DacCode::from(y).0;
                            })
                            .last();
                    }

                    // Stream the data.
                    const N: usize = BATCH_SIZE * size_of::<i16>();
                    generator.add(|buf| {
                        for (data, buf) in adc_samples
                            .iter()
                            .chain(dac_samples.iter())
                            .zip(buf.chunks_exact_mut(N))
                        {
                            let data = unsafe {
                                core::slice::from_raw_parts(
                                    data.as_ptr() as *const MaybeUninit<u8>,
                                    N,
                                )
                            };
                            buf.copy_from_slice(data)
                        }
                        N * 4
                    });
                    // Update telemetry measurements.
                    telemetry.adcs = [
                        AdcCode(adc_samples[0][0]),
                        AdcCode(adc_samples[1][0]),
                    ];

                    telemetry.dacs = [
                        DacCode(dac_samples[0][0]),
                        DacCode(dac_samples[1][0]),
                    ];

                    // Preserve instruction and data ordering w.r.t. DMA flag access.
                    fence(Ordering::SeqCst);
                });
            },
        );
    }

    #[idle(shared=[network, settings, usb])]
    fn idle(mut c: idle::Context) -> ! {
        loop {
            match (&mut c.shared.network, &mut c.shared.settings)
                .lock(|net, settings| net.update(&mut settings.dual_iir))
            {
                NetworkState::SettingsChanged => {
                    settings_update::spawn().unwrap()
                }
                NetworkState::Updated => {}
                NetworkState::NoChange => {
                    // We can't sleep if USB is not in suspend.
                    if c.shared.usb.lock(|usb| {
                        usb.state()
                            == usb_device::device::UsbDeviceState::Suspend
                    }) {
                        cortex_m::asm::wfi();
                    }
                }
            }
        }
    }

    #[task(priority = 1, local=[afes], shared=[network, settings, active_settings, source])]
    async fn settings_update(mut c: settings_update::Context) {
        c.shared.settings.lock(|settings| {
            c.local.afes.0.set_gain(*settings.dual_iir.afe[0]);
            c.local.afes.1.set_gain(*settings.dual_iir.afe[1]);

            // Update the signal generators
            for (i, &config) in settings.dual_iir.source.iter().enumerate() {
                match config.try_into_config(SAMPLE_PERIOD, DacCode::FULL_SCALE)
                {
                    Ok(config) => {
                        c.shared.source.lock(|generator| {
                            generator[i].update_waveform(config)
                        });
                    }
                    Err(err) => log::error!(
                        "Failed to update signal generation on DAC{}: {:?}",
                        i,
                        err
                    ),
                }
            }

            c.shared
                .network
                .lock(|net| net.direct_stream(*settings.dual_iir.stream));

            c.shared
                .active_settings
                .lock(|current| *current = settings.dual_iir.clone());
        });
    }

    #[task(priority = 1, shared=[network, settings, telemetry], local=[cpu_temp_sensor])]
    async fn telemetry(mut c: telemetry::Context) {
        loop {
            let telemetry =
                c.shared.telemetry.lock(|telemetry| telemetry.clone());

            let (gains, telemetry_period) =
                c.shared.settings.lock(|settings| {
                    (settings.dual_iir.afe, *settings.dual_iir.telemetry_period)
                });

            c.shared.network.lock(|net| {
                net.telemetry.publish(&telemetry.finalize(
                    *gains[0],
                    *gains[1],
                    c.local.cpu_temp_sensor.get_temperature().unwrap(),
                ))
            });

            Systick::delay((telemetry_period as u32).secs()).await;
        }
    }

    #[task(priority = 1, shared=[usb, settings], local=[usb_terminal])]
    async fn usb(mut c: usb::Context) {
        loop {
            // Handle the USB serial terminal.
            c.shared.usb.lock(|usb| {
                usb.poll(&mut [c
                    .local
                    .usb_terminal
                    .interface_mut()
                    .inner_mut()]);
            });

            c.shared.settings.lock(|settings| {
                if c.local.usb_terminal.poll(settings).unwrap() {
                    settings_update::spawn().unwrap()
                }
            });

            Systick::delay(10.millis()).await;
        }
    }

    #[task(priority = 1, shared=[network])]
    async fn ethernet_link(mut c: ethernet_link::Context) {
        loop {
            c.shared.network.lock(|net| net.processor.handle_link());
            Systick::delay(1.secs()).await;
        }
    }

    #[task(binds = ETH, priority = 1)]
    fn eth(_: eth::Context) {
        unsafe { hal::ethernet::interrupt_handler() }
    }

    #[task(binds = SPI2, priority = 4)]
    fn spi2(_: spi2::Context) {
        panic!("ADC0 SPI error");
    }

    #[task(binds = SPI3, priority = 4)]
    fn spi3(_: spi3::Context) {
        panic!("ADC1 SPI error");
    }

    #[task(binds = SPI4, priority = 4)]
    fn spi4(_: spi4::Context) {
        panic!("DAC0 SPI error");
    }

    #[task(binds = SPI5, priority = 4)]
    fn spi5(_: spi5::Context) {
        panic!("DAC1 SPI error");
    }
}