dual_iir/dual-iir.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
//! # Dual IIR
//!
//! The Dual IIR application exposes two configurable channels. Stabilizer samples input at a fixed
//! rate, digitally filters the data, and then generates filtered output signals on the respective
//! channel outputs.
//!
//! ## Features
//! * Two indpenendent channels
//! * up to 800 kHz rate, timed sampling
//! * Run-time filter configuration
//! * Input/Output data streaming
//! * Down to 2 µs latency
//! * f32 IIR math
//! * Generic biquad (second order) IIR filter
//! * Anti-windup
//! * Derivative kick avoidance
//!
//! ## Settings
//! Refer to the [DualIir] structure for documentation of run-time configurable settings for this
//! application.
//!
//! ## Telemetry
//! Refer to [stabilizer::net::telemetry::Telemetry] for information about telemetry reported by this application.
//!
//! ## Stream
//! This application streams raw ADC and DAC data over UDP. Refer to
//! [stabilizer::net::data_stream] for more information.
#![no_std]
#![no_main]
use core::mem::MaybeUninit;
use core::sync::atomic::{fence, Ordering};
use miniconf::{Leaf, Tree};
use serde::{Deserialize, Serialize};
use rtic_monotonics::Monotonic;
use fugit::ExtU32;
use mutex_trait::prelude::*;
use idsp::iir;
use stabilizer::{
hardware::{
self,
adc::{Adc0Input, Adc1Input, AdcCode},
afe::Gain,
dac::{Dac0Output, Dac1Output, DacCode},
hal,
signal_generator::{self, Source},
timers::SamplingTimer,
DigitalInput0, DigitalInput1, SerialTerminal, SystemTimer, Systick,
UsbDevice, AFE0, AFE1,
},
net::{
data_stream::{FrameGenerator, StreamFormat, StreamTarget},
telemetry::TelemetryBuffer,
NetworkState, NetworkUsers,
},
settings::NetSettings,
};
const SCALE: f32 = i16::MAX as _;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
// The number of samples in each batch process
const BATCH_SIZE: usize = 8;
// The logarithm of the number of 100MHz timer ticks between each sample. With a value of 2^7 =
// 128, there is 1.28uS per sample, corresponding to a sampling frequency of 781.25 KHz.
const SAMPLE_TICKS_LOG2: u8 = 7;
const SAMPLE_TICKS: u32 = 1 << SAMPLE_TICKS_LOG2;
const SAMPLE_PERIOD: f32 =
SAMPLE_TICKS as f32 * hardware::design_parameters::TIMER_PERIOD;
#[derive(Clone, Debug, Tree)]
pub struct Settings {
dual_iir: DualIir,
net: NetSettings,
}
impl stabilizer::settings::AppSettings for Settings {
fn new(net: NetSettings) -> Self {
Self {
net,
dual_iir: DualIir::default(),
}
}
fn net(&self) -> &NetSettings {
&self.net
}
}
impl serial_settings::Settings for Settings {
fn reset(&mut self) {
*self = Self {
dual_iir: DualIir::default(),
net: NetSettings::new(self.net.mac),
}
}
}
#[derive(Clone, Debug, Tree, Serialize, Deserialize)]
pub struct DualIir {
/// Configure the Analog Front End (AFE) gain.
afe: [Leaf<Gain>; 2],
/// Configure the IIR filter parameters.
///
/// # Path
/// `iir_ch/<n>/<m>`
///
/// * `<n>` specifies which channel to configure. `<n>` := [0, 1]
/// * `<m>` specifies which cascade to configure. `<m>` := [0, 1], depending on [IIR_CASCADE_LENGTH]
///
/// See [iir::Biquad]
iir_ch: [[Leaf<iir::Biquad<f32>>; IIR_CASCADE_LENGTH]; 2],
/// Use DI0/1 to HOLD the biquad.
allow_hold: Leaf<bool>,
/// Force the biquad to HOLD.
force_hold: Leaf<bool>,
/// Telemetry output period in seconds.
telemetry_period: Leaf<f32>,
/// Target IP and port for UDP streaming.
///
/// Can be multicast.
///
/// # Value
/// See [StreamTarget#miniconf]
stream: Leaf<StreamTarget>,
/// Signal generator configuration to add to the DAC0/DAC1 outputs
source: [signal_generator::Config; 2],
trigger: Leaf<bool>,
}
impl Default for DualIir {
fn default() -> Self {
let mut i = iir::Biquad::IDENTITY;
i.set_min(-SCALE);
i.set_max(SCALE);
let mut source = signal_generator::Config::default();
source.period = SAMPLE_PERIOD;
source.scale = DacCode::FULL_SCALE;
Self {
// Analog frontend programmable gain amplifier gains (G1, G2, G5, G10)
afe: Default::default(),
// IIR filter tap gains are an array `[b0, b1, b2, a1, a2]` such that the
// new output is computed as `y0 = a1*y1 + a2*y2 + b0*x0 + b1*x1 + b2*x2`.
// The array is `iir_state[channel-index][cascade-index][coeff-index]`.
// The IIR coefficients can be mapped to other transfer function
// representations, for example as described in https://arxiv.org/abs/1508.06319
iir_ch: [[i.into(); IIR_CASCADE_LENGTH]; 2],
// Permit the DI1 digital input to suppress filter output updates.
allow_hold: false.into(),
// Force suppress filter output updates.
force_hold: false.into(),
// The default telemetry period in seconds.
telemetry_period: 10.0.into(),
source: [source; 2],
trigger: false.into(),
stream: Default::default(),
}
}
}
#[rtic::app(device = stabilizer::hardware::hal::stm32, peripherals = true, dispatchers=[DCMI, JPEG, LTDC, SDMMC])]
mod app {
use super::*;
#[shared]
struct Shared {
usb: UsbDevice,
network: NetworkUsers<DualIir, 3>,
settings: Settings,
active_settings: DualIir,
telemetry: TelemetryBuffer,
source: [Source; 2],
}
#[local]
struct Local {
usb_terminal: SerialTerminal<Settings, 4>,
sampling_timer: SamplingTimer,
digital_inputs: (DigitalInput0, DigitalInput1),
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
iir_state: [[[f32; 4]; IIR_CASCADE_LENGTH]; 2],
generator: FrameGenerator,
cpu_temp_sensor: stabilizer::hardware::cpu_temp_sensor::CpuTempSensor,
}
#[init]
fn init(c: init::Context) -> (Shared, Local) {
let clock = SystemTimer::new(|| Systick::now().ticks());
// Configure the microcontroller
let (stabilizer, _pounder) = hardware::setup::setup::<Settings, 4>(
c.core,
c.device,
clock,
BATCH_SIZE,
SAMPLE_TICKS,
);
let mut network = NetworkUsers::new(
stabilizer.net.stack,
stabilizer.net.phy,
clock,
env!("CARGO_BIN_NAME"),
&stabilizer.settings.net,
stabilizer.metadata,
);
let generator = network.configure_streaming(StreamFormat::AdcDacData);
let source =
Source::try_from_config(&stabilizer.settings.dual_iir.source[0])
.unwrap();
let shared = Shared {
usb: stabilizer.usb,
network,
active_settings: stabilizer.settings.dual_iir.clone(),
telemetry: TelemetryBuffer::default(),
source: [source.clone(), source],
settings: stabilizer.settings,
};
let mut local = Local {
usb_terminal: stabilizer.usb_serial,
sampling_timer: stabilizer.adc_dac_timer,
digital_inputs: stabilizer.digital_inputs,
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
iir_state: [[[0.; 4]; IIR_CASCADE_LENGTH]; 2],
generator,
cpu_temp_sensor: stabilizer.temperature_sensor,
};
// Enable ADC/DAC events
local.adcs.0.start();
local.adcs.1.start();
local.dacs.0.start();
local.dacs.1.start();
// Spawn a settings update for default settings.
settings_update::spawn().unwrap();
telemetry::spawn().unwrap();
ethernet_link::spawn().unwrap();
usb::spawn().unwrap();
start::spawn().unwrap();
(shared, local)
}
#[task(priority = 1, local=[sampling_timer])]
async fn start(c: start::Context) {
Systick::delay(100.millis()).await;
// Start sampling ADCs and DACs.
c.local.sampling_timer.start();
}
/// Main DSP processing routine.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, local=[digital_inputs, adcs, dacs, iir_state, generator], shared=[active_settings, source, telemetry], priority=3)]
#[link_section = ".itcm.process"]
fn process(c: process::Context) {
let process::SharedResources {
active_settings,
telemetry,
source,
..
} = c.shared;
let process::LocalResources {
digital_inputs,
adcs: (adc0, adc1),
dacs: (dac0, dac1),
iir_state,
generator,
..
} = c.local;
(active_settings, telemetry, source).lock(
|settings, telemetry, source| {
let digital_inputs =
[digital_inputs.0.is_high(), digital_inputs.1.is_high()];
telemetry.digital_inputs = digital_inputs;
let hold = *settings.force_hold
|| (digital_inputs[1] && *settings.allow_hold);
(adc0, adc1, dac0, dac1).lock(|adc0, adc1, dac0, dac1| {
let adc_samples = [adc0, adc1];
let dac_samples = [dac0, dac1];
// Preserve instruction and data ordering w.r.t. DMA flag access.
fence(Ordering::SeqCst);
for channel in 0..adc_samples.len() {
adc_samples[channel]
.iter()
.zip(dac_samples[channel].iter_mut())
.zip(&mut source[channel])
.map(|((ai, di), signal)| {
let x = f32::from(*ai as i16);
let y = settings.iir_ch[channel]
.iter()
.zip(iir_state[channel].iter_mut())
.fold(x, |yi, (ch, state)| {
let filter = if hold {
&iir::Biquad::HOLD
} else {
ch
};
filter.update(state, yi)
});
// Note(unsafe): The filter limits must ensure that the value is in range.
// The truncation introduces 1/2 LSB distortion.
let y: i16 = unsafe { y.to_int_unchecked() };
let y = y.saturating_add((signal >> 16) as _);
// Convert to DAC code
*di = DacCode::from(y).0;
})
.last();
}
// Stream the data.
const N: usize = BATCH_SIZE * size_of::<i16>();
generator.add(|buf| {
for (data, buf) in adc_samples
.iter()
.chain(dac_samples.iter())
.zip(buf.chunks_exact_mut(N))
{
let data = unsafe {
core::slice::from_raw_parts(
data.as_ptr() as *const MaybeUninit<u8>,
N,
)
};
buf.copy_from_slice(data)
}
N * 4
});
// Update telemetry measurements.
telemetry.adcs = [
AdcCode(adc_samples[0][0]),
AdcCode(adc_samples[1][0]),
];
telemetry.dacs = [
DacCode(dac_samples[0][0]),
DacCode(dac_samples[1][0]),
];
// Preserve instruction and data ordering w.r.t. DMA flag access.
fence(Ordering::SeqCst);
});
},
);
}
#[idle(shared=[network, settings, usb])]
fn idle(mut c: idle::Context) -> ! {
loop {
match (&mut c.shared.network, &mut c.shared.settings)
.lock(|net, settings| net.update(&mut settings.dual_iir))
{
NetworkState::SettingsChanged => {
settings_update::spawn().unwrap();
}
NetworkState::Updated => {}
NetworkState::NoChange => {
// We can't sleep if USB is not in suspend.
if c.shared.usb.lock(|usb| {
usb.state()
== usb_device::device::UsbDeviceState::Suspend
}) {
cortex_m::asm::wfi();
}
}
}
}
}
#[task(priority = 1, local=[afes], shared=[network, settings, active_settings, source])]
async fn settings_update(mut c: settings_update::Context) {
c.shared.settings.lock(|settings| {
c.local.afes.0.set_gain(*settings.dual_iir.afe[0]);
c.local.afes.1.set_gain(*settings.dual_iir.afe[1]);
if *settings.dual_iir.trigger {
settings.dual_iir.trigger = false.into();
for (i, config) in settings.dual_iir.source.iter().enumerate() {
match Source::try_from_config(config) {
Ok(source) => {
c.shared.source.lock(|s| {
s[i] = source;
});
}
Err(err) => log::error!(
"Failed to update source on channel {}: {:?}",
i,
err
),
}
}
}
c.shared
.network
.lock(|net| net.direct_stream(*settings.dual_iir.stream));
c.shared
.active_settings
.lock(|current| *current = settings.dual_iir.clone());
});
}
#[task(priority = 1, shared=[network, settings, telemetry], local=[cpu_temp_sensor])]
async fn telemetry(mut c: telemetry::Context) {
loop {
let telemetry =
c.shared.telemetry.lock(|telemetry| telemetry.clone());
let (gains, telemetry_period) =
c.shared.settings.lock(|settings| {
(settings.dual_iir.afe, *settings.dual_iir.telemetry_period)
});
c.shared.network.lock(|net| {
net.telemetry.publish(&telemetry.finalize(
*gains[0],
*gains[1],
c.local.cpu_temp_sensor.get_temperature().unwrap(),
))
});
Systick::delay(((telemetry_period * 1000.0) as u32).millis()).await;
}
}
#[task(priority = 1, shared=[usb, settings], local=[usb_terminal])]
async fn usb(mut c: usb::Context) {
loop {
// Handle the USB serial terminal.
c.shared.usb.lock(|usb| {
usb.poll(&mut [c
.local
.usb_terminal
.interface_mut()
.inner_mut()]);
});
c.shared.settings.lock(|settings| {
if c.local.usb_terminal.poll(settings).unwrap() {
settings_update::spawn().unwrap()
}
});
Systick::delay(10.millis()).await;
}
}
#[task(priority = 1, shared=[network])]
async fn ethernet_link(mut c: ethernet_link::Context) {
loop {
c.shared.network.lock(|net| net.processor.handle_link());
Systick::delay(1.secs()).await;
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 4)]
fn spi2(_: spi2::Context) {
panic!("ADC0 SPI error");
}
#[task(binds = SPI3, priority = 4)]
fn spi3(_: spi3::Context) {
panic!("ADC1 SPI error");
}
#[task(binds = SPI4, priority = 4)]
fn spi4(_: spi4::Context) {
panic!("DAC0 SPI error");
}
#[task(binds = SPI5, priority = 4)]
fn spi5(_: spi5::Context) {
panic!("DAC1 SPI error");
}
}