ad9959/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#![no_std]

use arbitrary_int::{u10, u14, u2, u24, u3, u4, u5, Number};
use bitbybit::{bitenum, bitfield};
use embedded_hal::{blocking::delay::DelayUs, digital::v2::OutputPin};

/// A trait that allows a HAL to provide a means of communicating with the AD9959.
pub trait Interface {
    type Error;
    fn configure_mode(&mut self, mode: Mode) -> Result<(), Self::Error>;
    fn write(&mut self, addr: Address, data: &[u8]) -> Result<(), Self::Error>;
    fn read(
        &mut self,
        addr: Address,
        data: &mut [u8],
    ) -> Result<(), Self::Error>;
}

/// Indicates various communication modes of the DDS. The value of this enumeration is equivalent to
/// the configuration bits of the DDS CSR register.
#[derive(PartialEq)]
#[bitenum(u2, exhaustive = true)]
pub enum Mode {
    SingleBitTwoWire = 0b00,
    SingleBitThreeWire = 0b01,
    TwoBitSerial = 0b10,
    FourBitSerial = 0b11,
}

pub type Channel = u4;

#[bitfield(u8, default = 0xf0)]
#[derive(Debug, PartialEq)]
pub struct Csr {
    #[bit(0, rw)]
    lsb_first: bool,
    #[bits(1..=2, rw)]
    mode: Mode,
    #[bits(4..=7, rw)]
    channel: u4,
}

#[bitfield(u24, default = 0)]
#[derive(Debug, PartialEq)]
pub struct Fr1 {
    #[bit(0, rw)]
    sw_sync: bool,
    #[bit(1, rw)]
    hw_sync: bool,
    #[bit(4, rw)]
    dac_ref_pd: bool,
    #[bit(5, rw)]
    sync_clk_pd: bool,
    #[bit(6, rw)]
    ext_pd: bool,
    #[bit(7, rw)]
    ext_clk_pd: bool,
    #[bits(8..=9, rw)]
    modulation: u2,
    #[bits(10..=11, rw)]
    ramp_up_down: u2,
    #[bits(12..=14, rw)]
    profile_pin: u3,
    #[bits(16..=17, rw)]
    charge_pump: u2,
    #[bits(18..=22, rw)]
    pll_divier: u5,
    #[bit(23, rw)]
    vco_high: bool,
}

#[bitfield(u24, default = 0)]
#[derive(Debug, PartialEq)]
pub struct Acr {
    #[bits(0..=9, rw)]
    asf: u10,
    #[bit(10, rw)]
    load_arr: bool,
    #[bit(11, rw)]
    ramp: bool,
    #[bit(12, rw)]
    multiplier: bool,
    #[bits(14..=15, rw)]
    step: u2,
    #[bits(16..=23, rw)]
    arr: u8,
}

#[allow(clippy::upper_case_acronyms)]
#[bitenum(u7)]
pub enum Address {
    CSR = 0x00,
    FR1 = 0x01,
    FR2 = 0x02,
    CFR = 0x03,
    CFTW0 = 0x04,
    CPOW0 = 0x05,
    ACR = 0x06,
    LSRR = 0x07,
    RDW = 0x08,
    FDW = 0x09,
    CW1 = 0x0a,
    CW2 = 0x0b,
    CW3 = 0x0c,
    CW4 = 0x0d,
    CW5 = 0x0e,
    CW6 = 0x0f,
    CW7 = 0x10,
    CW8 = 0x11,
    CW9 = 0x12,
    CW10 = 0x13,
    CW11 = 0x14,
    CW12 = 0x15,
    CW13 = 0x16,
    CW14 = 0x17,
    CW15 = 0x18,
}

/// Possible errors generated by the AD9959 driver.
#[derive(Debug)]
pub enum Error {
    Interface,
    Check,
    Bounds,
    Pin,
    Frequency,
}

/// A device driver for the AD9959 direct digital synthesis (DDS) chip.
///
/// This chip provides four independently controllable digital-to-analog output sinusoids with
/// configurable phase, amplitude, and frequency. All channels are inherently synchronized as they
/// are derived off a common system clock.
///
/// The chip contains a configurable PLL and supports system clock frequencies up to 500 MHz.
///
/// The chip supports a number of serial interfaces to improve data throughput, including normal,
/// dual, and quad SPI configurations.
pub struct Ad9959<I> {
    interface: I,
    ftw_per_hz: f32,
    mode: Mode,
}

impl<I: Interface> Ad9959<I> {
    /// Construct and initialize the DDS.
    ///
    /// Args:
    /// * `interface` - An interface to the DDS.
    /// * `reset_pin` - A pin connected to the DDS reset input.
    /// * `io_update` - A pin connected to the DDS io_update input.
    /// * `delay` - A delay implementation for blocking operation for specific amounts of time.
    /// * `desired_mode` - The desired communication mode of the interface to the DDS.
    /// * `clock_frequency` - The clock frequency of the reference clock input.
    /// * `multiplier` - The desired clock multiplier for the system clock. This multiplies
    ///   `clock_frequency` to generate the system clock.
    pub fn new(
        interface: I,
        reset: &mut impl OutputPin,
        io_update: &mut impl OutputPin,
        delay: &mut impl DelayUs<u8>,
        mode: Mode,
        reference_clock_frequency: f32,
        multiplier: u5,
    ) -> Result<Self, Error> {
        let mut ad9959 = Ad9959 {
            interface,
            ftw_per_hz: 0.0,
            mode,
        };
        io_update.set_low().or(Err(Error::Pin))?;

        // Reset the AD9959 (Pounder v1.1 and earlier)
        // On Pounder v1.2 and later the reset has been done through the GPIO extender in
        // PounderDevices before.
        reset.set_high().or(Err(Error::Pin))?;
        // Delays here are at least 1 SYNC_CLK period. The SYNC_CLK is guaranteed
        // to be at least 250KHz (1/4 of 1MHz minimum REF_CLK). We use 5uS instead of 4uS to
        // guarantee conformance with datasheet requirements.
        delay.delay_us(5);
        reset.set_low().or(Err(Error::Pin))?;

        ad9959
            .interface
            .configure_mode(Mode::SingleBitTwoWire)
            .or(Err(Error::Interface))?;

        let csr = Csr::default().with_channel(u4::new(0b1111)).with_mode(mode);
        ad9959.write(Address::CSR, &csr.raw_value().to_be_bytes())?;

        io_update.set_high().or(Err(Error::Pin))?;
        delay.delay_us(5);
        io_update.set_low().or(Err(Error::Pin))?;

        ad9959
            .interface
            .configure_mode(mode)
            .or(Err(Error::Interface))?;

        // Empirical evidence indicates a delay is necessary here for the IO update to become
        // active. This is likely due to needing to wait at least 1 clock cycle of the DDS for the
        // interface update to occur.
        delay.delay_us(5);

        // Read back the CSR to ensure it specifies the mode correctly.
        let mut updated_csr = 0u8.to_be_bytes();
        ad9959.read(Address::CSR, &mut updated_csr)?;
        if updated_csr != csr.raw_value().to_be_bytes() {
            return Err(Error::Check);
        }

        // Set the clock frequency to configure the device as necessary.
        ad9959.set_system_clock(reference_clock_frequency, multiplier)?;
        io_update.set_high().or(Err(Error::Pin))?;
        delay.delay_us(5);
        io_update.set_low().or(Err(Error::Pin))?;

        Ok(ad9959)
    }

    fn read(&mut self, reg: Address, data: &mut [u8]) -> Result<(), Error> {
        self.interface.read(reg, data).or(Err(Error::Interface))
    }

    fn write(&mut self, reg: Address, data: &[u8]) -> Result<(), Error> {
        self.interface.write(reg, data).or(Err(Error::Interface))
    }

    /// Configure the internal system clock of the chip.
    ///
    /// Arguments:
    /// * `reference_clock_frequency` - The reference clock frequency provided to the AD9959 core.
    /// * `multiplier` - The frequency multiplier of the system clock. Must be 1 or 4-20.
    ///
    /// Returns:
    /// The actual frequency configured for the internal system clock.
    fn set_system_clock(
        &mut self,
        reference_clock_frequency: f32,
        multiplier: u5,
    ) -> Result<f32, Error> {
        let sysclk = multiplier.value() as f32 * reference_clock_frequency;
        if match multiplier.value() {
            1 => !(1e6..=500e6).contains(&reference_clock_frequency),
            4..=20 => {
                !(10e6..=125e6).contains(&reference_clock_frequency)
                    || !(100e6..=500e6).contains(&sysclk)
            }
            _ => true,
        } {
            return Err(Error::Bounds);
        }
        let mut fr1 = u24::new(0).to_be_bytes();
        self.read(Address::FR1, &mut fr1)?;
        let fr1 = Fr1::new_with_raw_value(u24::from_be_bytes(fr1))
            .with_pll_divier(multiplier)
            .with_vco_high(sysclk >= 200e6);
        self.write(Address::FR1, &fr1.raw_value().to_be_bytes())?;
        self.ftw_per_hz = (1u64 << 32) as f32 / sysclk;
        Ok(sysclk)
    }

    /// Get the current CSR register.
    pub fn csr(&mut self) -> Result<Csr, Error> {
        let mut data = u8::new(0).to_be_bytes();
        self.read(Address::CSR, &mut data)?;
        Ok(Csr::new_with_raw_value(u8::from_be_bytes(data)))
    }

    /// Get the current FR1 register.
    pub fn fr1(&mut self) -> Result<Fr1, Error> {
        let mut data = u24::new(0).to_be_bytes();
        self.read(Address::FR1, &mut data)?;
        Ok(Fr1::new_with_raw_value(u24::from_be_bytes(data)))
    }

    /// Perform a self-test of the communication interface.
    ///
    /// Note:
    /// This modifies the existing channel enables. They are restored upon exit.
    ///
    /// Returns:
    /// True if the self test succeeded. False otherwise.
    pub fn self_test(&mut self) -> Result<bool, Error> {
        let mut data = [0];

        // Get current CSR.
        self.read(Address::CSR, &mut data)?;
        let old_csr = data;

        let mut csr = Csr::new_with_raw_value(data[0]);

        // Enable all channels.
        csr.set_channel(u4::new(0b1111));
        self.write(Address::CSR, &[csr.raw_value()])?;
        self.read(Address::CSR, &mut data)?;
        if Csr::new_with_raw_value(data[0]).channel() != csr.channel() {
            return Ok(false);
        }

        // Clear all channel enables.
        csr.set_channel(u4::new(0b0000));
        self.write(Address::CSR, &[csr.raw_value()])?;
        self.read(Address::CSR, &mut data)?;
        if Csr::new_with_raw_value(data[0]).channel() != csr.channel() {
            return Ok(false);
        }

        // Restore the CSR.
        self.write(Address::CSR, &old_csr)?;

        Ok(true)
    }

    /// Get the current system clock frequency in Hz.
    fn system_clock_frequency(&self) -> f32 {
        (1u64 << 32) as f32 / self.ftw_per_hz
    }

    /// Update an output channel configuration register.
    ///
    /// Args:
    /// * `channel` - The channel to configure.
    /// * `register` - The register to update.
    /// * `data` - The contents to write to the provided register.
    fn write_channel(
        &mut self,
        channel: Channel,
        register: Address,
        data: &[u8],
    ) -> Result<(), Error> {
        // Disable all other outputs so that we can update the configuration register of only the
        // specified channel.
        let csr = Csr::default().with_channel(channel).with_mode(self.mode);
        self.write(Address::CSR, &csr.raw_value().to_be_bytes())?;
        self.write(register, data)?;
        Ok(())
    }

    /// Read a configuration register of a specific channel.
    ///
    /// Args:
    /// * `channel` - The channel to read.
    /// * `register` - The register to read.
    /// * `data` - A location to store the read register contents.
    fn read_channel(
        &mut self,
        channel: Channel,
        register: Address,
        data: &mut [u8],
    ) -> Result<(), Error> {
        let csr = Csr::default().with_channel(channel).with_mode(self.mode);
        self.write(Address::CSR, &csr.raw_value().to_be_bytes())?;
        self.read(register, data)?;
        Ok(())
    }

    /// Configure the phase of a specified channel.
    ///
    /// Arguments:
    /// * `channel` - The channel to configure the frequency of.
    /// * `phase_turns` - The desired phase offset in turns.
    ///
    /// Returns:
    /// The actual programmed phase offset of the channel in turns.
    pub fn set_phase(
        &mut self,
        channel: Channel,
        phase: f32,
    ) -> Result<f32, Error> {
        let pow = u14::new((phase * (1 << 14) as f32) as u16 & 0x3FFF);
        self.write_channel(
            channel,
            Address::CPOW0,
            &pow.value().to_be_bytes(),
        )?;
        Ok(pow.value() as f32 / (1 << 14) as f32)
    }

    /// Get the current phase of a specified channel.
    ///
    /// Args:
    /// * `channel` - The channel to get the phase of.
    ///
    /// Returns:
    /// The phase of the channel in turns.
    pub fn get_phase(&mut self, channel: Channel) -> Result<f32, Error> {
        let mut pow = 0u16.to_be_bytes();
        self.read_channel(channel, Address::CPOW0, &mut pow)?;
        let pow = u16::from_be_bytes(pow) & 0x3FFF;
        Ok(pow as f32 / (1 << 14) as f32)
    }

    /// Configure the amplitude of a specified channel.
    ///
    /// Arguments:
    /// * `channel` - The channel to configure the frequency of.
    /// * `amplitude` - A normalized amplitude setting [0, 1].
    ///
    /// Returns:
    /// The actual normalized amplitude of the channel relative to full-scale range.
    pub fn set_amplitude(
        &mut self,
        channel: Channel,
        amplitude: f32,
    ) -> Result<f32, Error> {
        if !(0.0..=1.0).contains(&amplitude) {
            return Err(Error::Bounds);
        }
        let asf = (amplitude * (1 << 10) as f32) as u16;
        let acr = match u10::try_new(asf) {
            Ok(asf) => Acr::default().with_multiplier(true).with_asf(asf),
            Err(_) => Acr::default().with_multiplier(false),
        };
        self.write_channel(
            channel,
            Address::ACR,
            &acr.raw_value().to_be_bytes(),
        )?;
        Ok(asf as f32 / (1 << 10) as f32)
    }

    /// Get the configured amplitude of a channel.
    ///
    /// Args:
    /// * `channel` - The channel to get the amplitude of.
    ///
    /// Returns:
    /// The normalized amplitude of the channel.
    pub fn get_amplitude(&mut self, channel: Channel) -> Result<f32, Error> {
        let mut acr = u24::new(0).to_be_bytes();
        self.read_channel(channel, Address::ACR, &mut acr)?;
        let acr = Acr::new_with_raw_value(u24::from_be_bytes(acr));
        Ok(if acr.multiplier() {
            1.0
        } else {
            acr.asf().value() as f32 / (1 << 10) as f32
        })
    }

    /// Configure the frequency of a specified channel.
    ///
    /// Arguments:
    /// * `channel` - The channel to configure the frequency of.
    /// * `frequency` - The desired output frequency in Hz.
    ///
    /// Returns:
    /// The actual programmed frequency of the channel.
    pub fn set_frequency(
        &mut self,
        channel: Channel,
        frequency: f32,
    ) -> Result<f32, Error> {
        if frequency < 0.0 || frequency > self.system_clock_frequency() {
            return Err(Error::Bounds);
        }
        let ftw = (frequency * self.ftw_per_hz) as u32;
        self.write_channel(channel, Address::CFTW0, &ftw.to_be_bytes())?;
        Ok(ftw as f32 / self.ftw_per_hz)
    }

    /// Get the frequency of a channel.
    ///
    /// Arguments:
    /// * `channel` - The channel to get the frequency of.
    ///
    /// Returns:
    /// The frequency of the channel in Hz.
    pub fn get_frequency(&mut self, channel: Channel) -> Result<f32, Error> {
        let mut ftw = 0u32.to_be_bytes();
        self.read_channel(channel, Address::CFTW0, &mut ftw)?;
        let ftw = u32::from_be_bytes(ftw);
        Ok(ftw as f32 / self.ftw_per_hz)
    }

    /// Finalize DDS configuration
    ///
    /// # Note
    /// This is intended for when the DDS profiles will be written as a stream of data to the DDS.
    ///
    /// # Returns
    /// (i, mode) where `i` is the interface to the DDS and `mode` is the frozen `Mode`.
    pub fn freeze(self) -> (I, Mode) {
        (self.interface, self.mode)
    }
}

/// Represents a means of serializing a DDS profile for writing to a stream.
pub struct ProfileSerializer {
    mode: Mode,
    // reorder or pad to work around https://github.com/japaric/heapless/issues/305
    // TODO: check
    // heapless::Vec<u8, 32>, especially its extend_from_slice() is slow
    index: usize,
    data: [u8; 32],
}

impl ProfileSerializer {
    /// Construct a new serializer.
    ///
    /// # Args
    /// * `mode` - The communication mode of the DDS.
    pub fn new(mode: Mode) -> Self {
        Self {
            mode,
            index: 0,
            data: [0; 32],
        }
    }

    /// Update a number of channels with the requested profile.
    ///
    /// # Args
    /// * `channels` - A set of channels to apply the configuration to.
    /// * `ftw` - If provided, indicates a frequency tuning word for the channels.
    /// * `pow` - If provided, indicates a phase offset word for the channels.
    /// * `acr` - If provided, indicates the amplitude control register for the channels. The ACR
    ///   should be stored in the 3 LSB of the word. Note that if amplitude scaling is to be used,
    ///   the "Amplitude multiplier enable" bit must be set.
    #[inline]
    pub fn push(
        &mut self,
        channels: Channel,
        ftw: Option<u32>,
        pow: Option<u14>,
        acr: Option<Acr>,
    ) {
        self.push_write(
            Address::CSR,
            &Csr::default()
                .with_mode(self.mode)
                .with_channel(channels)
                .raw_value()
                .to_be_bytes(),
        );
        if let Some(ftw) = ftw {
            self.push_write(Address::CFTW0, &ftw.to_be_bytes());
        }
        if let Some(pow) = pow {
            self.push_write(Address::CPOW0, &pow.value().to_be_bytes());
        }
        if let Some(acr) = acr {
            self.push_write(Address::ACR, &acr.raw_value().to_be_bytes());
        }
    }

    /// Add a register write to the serialization data.
    #[inline]
    fn push_write(&mut self, register: Address, value: &[u8]) {
        let data = &mut self.data[self.index..];
        data[0] = register as u8;
        data[1..1 + value.len()].copy_from_slice(value);
        self.index += 1 + value.len();
    }

    /// Get the serialized profile as a slice of 32-bit words.
    ///
    /// # Note
    /// The serialized profile will be padded to the next 32-bit word boundary by adding dummy
    /// writes to the CSR or LSRR registers.
    ///
    /// # Returns
    /// A slice of `u32` words representing the serialized profile.
    #[inline]
    pub fn finalize(&mut self) -> &[u32] {
        // Pad the buffer to 32-bit (4 byte) alignment by adding dummy writes to CSR and LSRR.
        // In the case of 1 byte padding, this instead pads with 5 bytes as there is no
        // valid single-byte write that could be used.
        if self.index & 1 != 0 {
            // Pad with 3 bytes
            self.push_write(Address::LSRR, &0u16.to_be_bytes());
        }
        if self.index & 2 != 0 {
            // Pad with 2 bytes
            self.push_write(
                Address::CSR,
                &Csr::default()
                    .with_mode(self.mode)
                    .raw_value()
                    .to_be_bytes(),
            );
        }
        bytemuck::cast_slice(&self.data[..self.index])
    }
}