ad9959/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
#![no_std]
use arbitrary_int::{u10, u14, u2, u24, u3, u4, u5, Number};
use bitbybit::{bitenum, bitfield};
use embedded_hal::{blocking::delay::DelayUs, digital::v2::OutputPin};
/// A trait that allows a HAL to provide a means of communicating with the AD9959.
pub trait Interface {
type Error;
fn configure_mode(&mut self, mode: Mode) -> Result<(), Self::Error>;
fn write(&mut self, addr: Address, data: &[u8]) -> Result<(), Self::Error>;
fn read(
&mut self,
addr: Address,
data: &mut [u8],
) -> Result<(), Self::Error>;
}
/// Indicates various communication modes of the DDS. The value of this enumeration is equivalent to
/// the configuration bits of the DDS CSR register.
#[derive(PartialEq)]
#[bitenum(u2, exhaustive = true)]
pub enum Mode {
SingleBitTwoWire = 0b00,
SingleBitThreeWire = 0b01,
TwoBitSerial = 0b10,
FourBitSerial = 0b11,
}
pub type Channel = u4;
#[bitfield(u8, default = 0xf0)]
#[derive(Debug, PartialEq)]
pub struct Csr {
#[bit(0, rw)]
lsb_first: bool,
#[bits(1..=2, rw)]
mode: Mode,
#[bits(4..=7, rw)]
channel: u4,
}
#[bitfield(u24, default = 0)]
#[derive(Debug, PartialEq)]
pub struct Fr1 {
#[bit(0, rw)]
sw_sync: bool,
#[bit(1, rw)]
hw_sync: bool,
#[bit(4, rw)]
dac_ref_pd: bool,
#[bit(5, rw)]
sync_clk_pd: bool,
#[bit(6, rw)]
ext_pd: bool,
#[bit(7, rw)]
ext_clk_pd: bool,
#[bits(8..=9, rw)]
modulation: u2,
#[bits(10..=11, rw)]
ramp_up_down: u2,
#[bits(12..=14, rw)]
profile_pin: u3,
#[bits(16..=17, rw)]
charge_pump: u2,
#[bits(18..=22, rw)]
pll_divier: u5,
#[bit(23, rw)]
vco_high: bool,
}
#[bitfield(u24, default = 0)]
#[derive(Debug, PartialEq)]
pub struct Acr {
#[bits(0..=9, rw)]
asf: u10,
#[bit(10, rw)]
load_arr: bool,
#[bit(11, rw)]
ramp: bool,
#[bit(12, rw)]
multiplier: bool,
#[bits(14..=15, rw)]
step: u2,
#[bits(16..=23, rw)]
arr: u8,
}
#[allow(clippy::upper_case_acronyms)]
#[bitenum(u7)]
pub enum Address {
CSR = 0x00,
FR1 = 0x01,
FR2 = 0x02,
CFR = 0x03,
CFTW0 = 0x04,
CPOW0 = 0x05,
ACR = 0x06,
LSRR = 0x07,
RDW = 0x08,
FDW = 0x09,
CW1 = 0x0a,
CW2 = 0x0b,
CW3 = 0x0c,
CW4 = 0x0d,
CW5 = 0x0e,
CW6 = 0x0f,
CW7 = 0x10,
CW8 = 0x11,
CW9 = 0x12,
CW10 = 0x13,
CW11 = 0x14,
CW12 = 0x15,
CW13 = 0x16,
CW14 = 0x17,
CW15 = 0x18,
}
/// Possible errors generated by the AD9959 driver.
#[derive(Debug)]
pub enum Error {
Interface,
Check,
Bounds,
Pin,
Frequency,
}
/// A device driver for the AD9959 direct digital synthesis (DDS) chip.
///
/// This chip provides four independently controllable digital-to-analog output sinusoids with
/// configurable phase, amplitude, and frequency. All channels are inherently synchronized as they
/// are derived off a common system clock.
///
/// The chip contains a configurable PLL and supports system clock frequencies up to 500 MHz.
///
/// The chip supports a number of serial interfaces to improve data throughput, including normal,
/// dual, and quad SPI configurations.
pub struct Ad9959<I> {
interface: I,
ftw_per_hz: f32,
mode: Mode,
}
impl<I: Interface> Ad9959<I> {
/// Construct and initialize the DDS.
///
/// Args:
/// * `interface` - An interface to the DDS.
/// * `reset_pin` - A pin connected to the DDS reset input.
/// * `io_update` - A pin connected to the DDS io_update input.
/// * `delay` - A delay implementation for blocking operation for specific amounts of time.
/// * `desired_mode` - The desired communication mode of the interface to the DDS.
/// * `clock_frequency` - The clock frequency of the reference clock input.
/// * `multiplier` - The desired clock multiplier for the system clock. This multiplies
/// `clock_frequency` to generate the system clock.
pub fn new(
interface: I,
reset: &mut impl OutputPin,
io_update: &mut impl OutputPin,
delay: &mut impl DelayUs<u8>,
mode: Mode,
reference_clock_frequency: f32,
multiplier: u5,
) -> Result<Self, Error> {
let mut ad9959 = Ad9959 {
interface,
ftw_per_hz: 0.0,
mode,
};
io_update.set_low().or(Err(Error::Pin))?;
// Reset the AD9959 (Pounder v1.1 and earlier)
// On Pounder v1.2 and later the reset has been done through the GPIO extender in
// PounderDevices before.
reset.set_high().or(Err(Error::Pin))?;
// Delays here are at least 1 SYNC_CLK period. The SYNC_CLK is guaranteed
// to be at least 250KHz (1/4 of 1MHz minimum REF_CLK). We use 5uS instead of 4uS to
// guarantee conformance with datasheet requirements.
delay.delay_us(5);
reset.set_low().or(Err(Error::Pin))?;
ad9959
.interface
.configure_mode(Mode::SingleBitTwoWire)
.or(Err(Error::Interface))?;
let csr = Csr::default().with_channel(u4::new(0b1111)).with_mode(mode);
ad9959.write(Address::CSR, &csr.raw_value().to_be_bytes())?;
io_update.set_high().or(Err(Error::Pin))?;
delay.delay_us(5);
io_update.set_low().or(Err(Error::Pin))?;
ad9959
.interface
.configure_mode(mode)
.or(Err(Error::Interface))?;
// Empirical evidence indicates a delay is necessary here for the IO update to become
// active. This is likely due to needing to wait at least 1 clock cycle of the DDS for the
// interface update to occur.
delay.delay_us(5);
// Read back the CSR to ensure it specifies the mode correctly.
let mut updated_csr = 0u8.to_be_bytes();
ad9959.read(Address::CSR, &mut updated_csr)?;
if updated_csr != csr.raw_value().to_be_bytes() {
return Err(Error::Check);
}
// Set the clock frequency to configure the device as necessary.
ad9959.set_system_clock(reference_clock_frequency, multiplier)?;
io_update.set_high().or(Err(Error::Pin))?;
delay.delay_us(5);
io_update.set_low().or(Err(Error::Pin))?;
Ok(ad9959)
}
fn read(&mut self, reg: Address, data: &mut [u8]) -> Result<(), Error> {
self.interface.read(reg, data).or(Err(Error::Interface))
}
fn write(&mut self, reg: Address, data: &[u8]) -> Result<(), Error> {
self.interface.write(reg, data).or(Err(Error::Interface))
}
/// Configure the internal system clock of the chip.
///
/// Arguments:
/// * `reference_clock_frequency` - The reference clock frequency provided to the AD9959 core.
/// * `multiplier` - The frequency multiplier of the system clock. Must be 1 or 4-20.
///
/// Returns:
/// The actual frequency configured for the internal system clock.
fn set_system_clock(
&mut self,
reference_clock_frequency: f32,
multiplier: u5,
) -> Result<f32, Error> {
let sysclk = multiplier.value() as f32 * reference_clock_frequency;
if match multiplier.value() {
1 => !(1e6..=500e6).contains(&reference_clock_frequency),
4..=20 => {
!(10e6..=125e6).contains(&reference_clock_frequency)
|| !(100e6..=500e6).contains(&sysclk)
}
_ => true,
} {
return Err(Error::Bounds);
}
let mut fr1 = u24::new(0).to_be_bytes();
self.read(Address::FR1, &mut fr1)?;
let fr1 = Fr1::new_with_raw_value(u24::from_be_bytes(fr1))
.with_pll_divier(multiplier)
.with_vco_high(sysclk >= 200e6);
self.write(Address::FR1, &fr1.raw_value().to_be_bytes())?;
self.ftw_per_hz = (1u64 << 32) as f32 / sysclk;
Ok(sysclk)
}
/// Get the current CSR register.
pub fn csr(&mut self) -> Result<Csr, Error> {
let mut data = u8::new(0).to_be_bytes();
self.read(Address::CSR, &mut data)?;
Ok(Csr::new_with_raw_value(u8::from_be_bytes(data)))
}
/// Get the current FR1 register.
pub fn fr1(&mut self) -> Result<Fr1, Error> {
let mut data = u24::new(0).to_be_bytes();
self.read(Address::FR1, &mut data)?;
Ok(Fr1::new_with_raw_value(u24::from_be_bytes(data)))
}
/// Perform a self-test of the communication interface.
///
/// Note:
/// This modifies the existing channel enables. They are restored upon exit.
///
/// Returns:
/// True if the self test succeeded. False otherwise.
pub fn self_test(&mut self) -> Result<bool, Error> {
let mut data = [0];
// Get current CSR.
self.read(Address::CSR, &mut data)?;
let old_csr = data;
let mut csr = Csr::new_with_raw_value(data[0]);
// Enable all channels.
csr.set_channel(u4::new(0b1111));
self.write(Address::CSR, &[csr.raw_value()])?;
self.read(Address::CSR, &mut data)?;
if Csr::new_with_raw_value(data[0]).channel() != csr.channel() {
return Ok(false);
}
// Clear all channel enables.
csr.set_channel(u4::new(0b0000));
self.write(Address::CSR, &[csr.raw_value()])?;
self.read(Address::CSR, &mut data)?;
if Csr::new_with_raw_value(data[0]).channel() != csr.channel() {
return Ok(false);
}
// Restore the CSR.
self.write(Address::CSR, &old_csr)?;
Ok(true)
}
/// Get the current system clock frequency in Hz.
fn system_clock_frequency(&self) -> f32 {
(1u64 << 32) as f32 / self.ftw_per_hz
}
/// Update an output channel configuration register.
///
/// Args:
/// * `channel` - The channel to configure.
/// * `register` - The register to update.
/// * `data` - The contents to write to the provided register.
fn write_channel(
&mut self,
channel: Channel,
register: Address,
data: &[u8],
) -> Result<(), Error> {
// Disable all other outputs so that we can update the configuration register of only the
// specified channel.
let csr = Csr::default().with_channel(channel).with_mode(self.mode);
self.write(Address::CSR, &csr.raw_value().to_be_bytes())?;
self.write(register, data)?;
Ok(())
}
/// Read a configuration register of a specific channel.
///
/// Args:
/// * `channel` - The channel to read.
/// * `register` - The register to read.
/// * `data` - A location to store the read register contents.
fn read_channel(
&mut self,
channel: Channel,
register: Address,
data: &mut [u8],
) -> Result<(), Error> {
let csr = Csr::default().with_channel(channel).with_mode(self.mode);
self.write(Address::CSR, &csr.raw_value().to_be_bytes())?;
self.read(register, data)?;
Ok(())
}
/// Configure the phase of a specified channel.
///
/// Arguments:
/// * `channel` - The channel to configure the frequency of.
/// * `phase_turns` - The desired phase offset in turns.
///
/// Returns:
/// The actual programmed phase offset of the channel in turns.
pub fn set_phase(
&mut self,
channel: Channel,
phase: f32,
) -> Result<f32, Error> {
let pow = u14::new((phase * (1 << 14) as f32) as u16 & 0x3FFF);
self.write_channel(
channel,
Address::CPOW0,
&pow.value().to_be_bytes(),
)?;
Ok(pow.value() as f32 / (1 << 14) as f32)
}
/// Get the current phase of a specified channel.
///
/// Args:
/// * `channel` - The channel to get the phase of.
///
/// Returns:
/// The phase of the channel in turns.
pub fn get_phase(&mut self, channel: Channel) -> Result<f32, Error> {
let mut pow = 0u16.to_be_bytes();
self.read_channel(channel, Address::CPOW0, &mut pow)?;
let pow = u16::from_be_bytes(pow) & 0x3FFF;
Ok(pow as f32 / (1 << 14) as f32)
}
/// Configure the amplitude of a specified channel.
///
/// Arguments:
/// * `channel` - The channel to configure the frequency of.
/// * `amplitude` - A normalized amplitude setting [0, 1].
///
/// Returns:
/// The actual normalized amplitude of the channel relative to full-scale range.
pub fn set_amplitude(
&mut self,
channel: Channel,
amplitude: f32,
) -> Result<f32, Error> {
if !(0.0..=1.0).contains(&litude) {
return Err(Error::Bounds);
}
let asf = (amplitude * (1 << 10) as f32) as u16;
let acr = match u10::try_new(asf) {
Ok(asf) => Acr::default().with_multiplier(true).with_asf(asf),
Err(_) => Acr::default().with_multiplier(false),
};
self.write_channel(
channel,
Address::ACR,
&acr.raw_value().to_be_bytes(),
)?;
Ok(asf as f32 / (1 << 10) as f32)
}
/// Get the configured amplitude of a channel.
///
/// Args:
/// * `channel` - The channel to get the amplitude of.
///
/// Returns:
/// The normalized amplitude of the channel.
pub fn get_amplitude(&mut self, channel: Channel) -> Result<f32, Error> {
let mut acr = u24::new(0).to_be_bytes();
self.read_channel(channel, Address::ACR, &mut acr)?;
let acr = Acr::new_with_raw_value(u24::from_be_bytes(acr));
Ok(if acr.multiplier() {
1.0
} else {
acr.asf().value() as f32 / (1 << 10) as f32
})
}
/// Configure the frequency of a specified channel.
///
/// Arguments:
/// * `channel` - The channel to configure the frequency of.
/// * `frequency` - The desired output frequency in Hz.
///
/// Returns:
/// The actual programmed frequency of the channel.
pub fn set_frequency(
&mut self,
channel: Channel,
frequency: f32,
) -> Result<f32, Error> {
if frequency < 0.0 || frequency > self.system_clock_frequency() {
return Err(Error::Bounds);
}
let ftw = (frequency * self.ftw_per_hz) as u32;
self.write_channel(channel, Address::CFTW0, &ftw.to_be_bytes())?;
Ok(ftw as f32 / self.ftw_per_hz)
}
/// Get the frequency of a channel.
///
/// Arguments:
/// * `channel` - The channel to get the frequency of.
///
/// Returns:
/// The frequency of the channel in Hz.
pub fn get_frequency(&mut self, channel: Channel) -> Result<f32, Error> {
let mut ftw = 0u32.to_be_bytes();
self.read_channel(channel, Address::CFTW0, &mut ftw)?;
let ftw = u32::from_be_bytes(ftw);
Ok(ftw as f32 / self.ftw_per_hz)
}
/// Finalize DDS configuration
///
/// # Note
/// This is intended for when the DDS profiles will be written as a stream of data to the DDS.
///
/// # Returns
/// (i, mode) where `i` is the interface to the DDS and `mode` is the frozen `Mode`.
pub fn freeze(self) -> (I, Mode) {
(self.interface, self.mode)
}
}
/// Represents a means of serializing a DDS profile for writing to a stream.
pub struct ProfileSerializer {
mode: Mode,
// reorder or pad to work around https://github.com/japaric/heapless/issues/305
// TODO: check
// heapless::Vec<u8, 32>, especially its extend_from_slice() is slow
index: usize,
data: [u8; 32],
}
impl ProfileSerializer {
/// Construct a new serializer.
///
/// # Args
/// * `mode` - The communication mode of the DDS.
pub fn new(mode: Mode) -> Self {
Self {
mode,
index: 0,
data: [0; 32],
}
}
/// Update a number of channels with the requested profile.
///
/// # Args
/// * `channels` - A set of channels to apply the configuration to.
/// * `ftw` - If provided, indicates a frequency tuning word for the channels.
/// * `pow` - If provided, indicates a phase offset word for the channels.
/// * `acr` - If provided, indicates the amplitude control register for the channels. The ACR
/// should be stored in the 3 LSB of the word. Note that if amplitude scaling is to be used,
/// the "Amplitude multiplier enable" bit must be set.
#[inline]
pub fn push(
&mut self,
channels: Channel,
ftw: Option<u32>,
pow: Option<u14>,
acr: Option<Acr>,
) {
self.push_write(
Address::CSR,
&Csr::default()
.with_mode(self.mode)
.with_channel(channels)
.raw_value()
.to_be_bytes(),
);
if let Some(ftw) = ftw {
self.push_write(Address::CFTW0, &ftw.to_be_bytes());
}
if let Some(pow) = pow {
self.push_write(Address::CPOW0, &pow.value().to_be_bytes());
}
if let Some(acr) = acr {
self.push_write(Address::ACR, &acr.raw_value().to_be_bytes());
}
}
/// Add a register write to the serialization data.
#[inline]
fn push_write(&mut self, register: Address, value: &[u8]) {
let data = &mut self.data[self.index..];
data[0] = register as u8;
data[1..1 + value.len()].copy_from_slice(value);
self.index += 1 + value.len();
}
/// Get the serialized profile as a slice of 32-bit words.
///
/// # Note
/// The serialized profile will be padded to the next 32-bit word boundary by adding dummy
/// writes to the CSR or LSRR registers.
///
/// # Returns
/// A slice of `u32` words representing the serialized profile.
#[inline]
pub fn finalize(&mut self) -> &[u32] {
// Pad the buffer to 32-bit (4 byte) alignment by adding dummy writes to CSR and LSRR.
// In the case of 1 byte padding, this instead pads with 5 bytes as there is no
// valid single-byte write that could be used.
if self.index & 1 != 0 {
// Pad with 3 bytes
self.push_write(Address::LSRR, &0u16.to_be_bytes());
}
if self.index & 2 != 0 {
// Pad with 2 bytes
self.push_write(
Address::CSR,
&Csr::default()
.with_mode(self.mode)
.raw_value()
.to_be_bytes(),
);
}
bytemuck::cast_slice(&self.data[..self.index])
}
}